利用数据挖掘技术提高饭店竞争力(1)(2)
2014-11-30 01:43
导读:这个步骤包括定义模型结构(是树、神经网络、还是规则归纳?)、搜索(选择具体的算法)和验证(什么时候算法能够得到正确的模型并停止计算?)。
这个步骤包括定义模型结构(是树、神经网络、还是规则归纳?)、搜索(选择具体的算法)和验证(什么时候算法能够得到正确的模型并停止计算?)。
处理、验证和实现模型
模型开发的一个重要准则是:用模型开发过程中未使用过的数据来验证模型。这个准则可以检验模型的健壮性。所以,在准备好数据、选择好合适的数据挖掘工具后,需要进行的是模型处理之前最后一个步骤——将数据文件分割成建模数据集和验证数据集两个部分。然后,我们就可以用准备好的数据和数据挖掘工具处理模型了。而建立的模型是否健壮,就需要在验证数据集上检验模型。如果模型验证的结果不佳,可能是由于数据有问题、变量匹配差或建模使用的数据挖掘技术不合理等因素造成的,就需要使用合适的验证技术使模型更加严格、有效。在成功地挖掘出有用的信息后,就可以利用这些信息来制定合适的市场战略。通过这种方式,我们可以把数据挖掘技术挖掘出来的信息转化成为有效的企业竞争力。
数据挖掘技术在饭店业的应用
这里引用了一个基于韩国豪华饭店的实例研究,旨在说明数据挖掘技术在饭店业的有效性和实用性,并借此案例进一步阐明在饭店业使用数据挖掘技术的具体实施过程。这个研究的目标是帮助饭店决策者建立饭店顾客的行为模式,并以此作为饭店制定可行市场战略的重要基础。
共2页: 1 [2] 下一页 论文出处(作者):
城市竞争力提升中的产业因素
打造零售企业核心竞争力