论基于数据挖掘技术的保险行业决策分析(1)(2)
2013-09-21 01:57
导读:● 结果分析:通过此操作界面可展示出客户购买习惯的分析结果,进而为行业提供了“可保持客户”的决策依据。 (4)“分析结果输出”模块包括:“客户购买
● 结果分析:通过此操作界面可展示出客户购买习惯的分析结果,进而为行业提供了“可保持客户”的决策依据。
(4)“分析结果输出”模块包括:“客户购买险种分析”“客户购买习惯分析”等分析结果的打印输出功能。
3 项目中改进的快速算法
由于Apriori算法存在时间空间复杂度高及产生大量冗余规则两大缺陷。因此本项目通过利用一个模式树结构来降低Apriori算法的存储复杂度,并同时减少冗余规则的出现。
3.1 一个模式树的结构
root是一个标为“null”的根结点,root以下是作为根结点的孩子的项目前缀子树集合,以及项目头表组成;树中的每一结点包含四个域user_id,count,node_link,node_next。其中,user_id为user的标记(唯一标识一个user),count为该父结点到达该结点的路径的数目,node_link指向树中具有相同的user_id的下一个结点的下一结点,当下一个结点不存在时,node_link为null,node_next指向树中其子结点;项目头表的每一表项包含三个域:user_id,count,head of node,user_id与树中的定义相同,count为树中所有相同user_id之和,head of node指向树中具有相同user_id值的首结点的指针。
3.2 建立模式树
算法如下:
设事务数据库为A,其中的一个项集为Ai。
算法:Patterntree(tree,p),构造模式树
输入:用户事务数据库A
输出:用户模式树
Procedure Patterntree(T,p)
{create_ tree (T);//创建Pattern-Tree的根节点,以“null”标记
t=T; //t为当前结点
While A