计算机网络入侵检测技术探讨(1)(2)
2014-02-19 01:32
导读:(2)根据收集到的信息进行分析 常用的分析方法有模式匹配、统计分析、完整性分析。模式匹配是将收集到的信息与已知的网络入侵和系统误用模式数据库
(2)根据收集到的信息进行分析
常用的分析方法有模式匹配、统计分析、完整性分析。模式匹配是将收集到的信息与已知的网络入侵和系统误用模式数据库进行比较,从而发现违背安全策略的行为。
统计分析方法首先给系统对象(如用户、文件、目录和设备等)创建一个统计描述,统计正常使用时的一些测量属性。测量属性的平均值将被用来与网络、系统的行为进行比较。当观察值超出正常值范围时,就有可能发生入侵行为。该方法的难点是阈值的选择,阈值太小可能产生错误的入侵报告,阈值太大可能漏报一些入侵事件。
完整性分析主要关注某个文件或对象是否被更改,包括文件和目录的内容及属性。该方法能有效地防范特洛伊木马的攻击。
3 分类及存在的问题
入侵检测通过对入侵和攻击行为的检测,查出系统的入侵者或合法用户对系统资源的滥用和误用。代写
工作总结 根据不同的检测方法,将入侵检测分为异常入侵检测(Anomaly Detection)和误用人侵检测(Misuse Detection)。
3.1 异常检测
又称为基于行为的检测。其基本前提是:假定所有的入侵行为都是异常的。首先建立系统或用户的“正常”行为特征轮廓,通过比较当前的系统或用户的行为是否偏离正常的行为特征轮廓来判断是否发生了入侵。此方法不依赖于是否表现出具体行为来进行检测,是一种间接的方法。
常用的具体方法有:统计异常检测方法、基于特征选择异常检测方法、基于贝叶斯推理异常检测方法、基于贝叶斯网络异常检测方法、基于模式预测异常检测方法、基于神经网络异常检测方法、基于机器学习异常检测方法、基于数据采掘异常检测方法等。
采用异常检测的关键问题有如下两个方面:
(科教作文网http://zw.ΝsΕAc.Com编辑整理)
(1)特征量的选择
在建立系统或用户的行为特征轮廓的正常模型时,选取的特征量既要能准确地体现系统或用户的行为特征,又能使模型最优化,即以最少的特征量就能涵盖系统或用户的行为特征。
共2页: 1 [2] 下一页 论文出处(作者):
传统图书馆与虚拟图书馆比较分析
浅谈计算机病毒