计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

基于非负矩阵分解方法的笔迹鉴别(1)(2)

2014-07-06 01:06
导读:(3-2)4 过程及其结果4.1 实验过程 作者用20个人的中文笔迹进行测试,包含每人30共600份手写汉字的笔迹图像,按彩色模式被扫描入计算机。其中15份/人作为
(3-2)4 过程及其结果4.1 实验过程 作者用20个人的中文笔迹进行测试,包含每人30共600份手写汉字的笔迹图像,按彩色模式被扫描入计算机。其中15份/人作为训练样本,其余的15份/人作为测试样本。即600份笔迹图像中,300份为训练样本,300份测试样本,其中部分样本见图1。 通过随机变换训练样本和测试样本,重复10次这样的实验。实验步骤如下: 图像预处理:首先去除所有的笔迹图像外边缘的空白,并将其归一化为20*20的256色灰度jpg图像。 特征提取:用NMF 100算法提取笔迹图像的特征,将 W、H 初始化为非负的正态分布矩阵,分别取r=20,25,30,35,40,45,50,100进行50次迭代得到图像特征空间。 笔迹鉴别:将测试样本映射特征空间,求出训练样本的特征向量,与已知的特征向量之间欧氏距离、Cos距离和K近邻(k=3)。然后对样本进行鉴别,得出鉴别结果。由于初始化矩阵的随机性,对每一个r值进行10次运算,分别求出其识别率。图1 “试”字的笔迹样本共2页: 1 [2] 下一页 论文出处(作者):
一种基于离散小波变换的稳健的混淆盲视频水印技术
蜜网中基于Linux平台的蜜罐技术的研究
上一篇:城市规划信息资源的共享与服务(1) 下一篇:没有了