FP-Growth关联算法应用研究(1)(2)
2014-09-29 01:13
导读:then ⑧调用FP-Growth(Treeβ,β);} 对FP-Tree方法的性能研究表明:对于挖掘长和短的频繁模式,它都是有效和可伸缩的,并且比Apriori方法快了1个数量级。4 应

then ⑧调用FP-Growth(Treeβ,β);} 对FP-Tree方法的性能研究表明:对于挖掘长和短的频繁模式,它都是有效和可伸缩的,并且比Apriori方法快了1个数量级。4 应用实现 本文主要是将FP-Growth算法应用到我校学生成绩数据库中,在学生成绩聚类的基础上对学生成绩的聚类簇与学生的内外部因素进行关联分析。4.1 关联分析目标 目前我校面对的教务处学生成绩数据库是一个多维的关系数据库,我们急切需要从这些海量数据中发现潜在的有用信息来帮助教学部门掌握更多的学生信息。基于此,根据学生的成绩信息对学生聚类,这些聚类信息反映了学生学习成绩的升降起伏等学习情况,结合学生的聚类信息与学生因素调查表信息,采用关联挖掘技术分析每一类学生的学生成绩与其内外部因素间的关联信息,进而分析得到影响学生学习的因素。共2页: 1 [2] 下一页 论文出处(作者):
基于离散F距的在线手写签名认证算法
基于本体的Web文档知识获取的框架研究