对帕斯卡概率逻辑的批判性反思(1)(2)
2015-03-15 01:10
导读:主体交互解释把概率看作是关于一个群体的共同信念度。被用来介绍主体交互概率的荷兰赌论证表明,如果这个群体同意一个共同的赌商,那么这个共同的
主体交互解释把概率看作是关于一个群体的共同信念度。被用来介绍主体交互概率的荷兰赌论证表明,如果这个群体同意一个共同的赌商,那么这个共同的赌商就会保护他们不被狡猾的对手打输。荷兰赌论证向群体的扩展仅仅对具有共同旨趣的群体有意义。这表明了这样的群体应该在其内部建立交流和信息流,使得他们通过讨论能够形成一致意见或主体交互概率。只有通过这种方式整个群体才能保护自己不输给狡猾的对手。但是,主体交互解释也不可避免地存在着一些问题,例如它只适用于具有共同旨趣的社会群体,而对一个缺乏共同旨趣的群体没有有效性,因为每个个体都将不关心这个群体的其他成员发生什么事情,因而每个个体将形成他或她自己的主观概率而不考虑其他人的信念;主体交互概率概念对宗教流派、
政治党派等社会群体来说是合适的概念,但他们通常没有达到包含全体人类。
以上是我们对符合经典概率演算的各种解释的分析和论述。很显然,主观解释、主体交互解释以及性向解释是当前可利用的比较有效的概率解释,它们都具有一定的恰当性和可应用性,但同时它们又不可避免地存在着一定的局限性。因此,一些学者试图从语形方面对经典概率演算系统进行修改或否定来研究概率逻辑。 二、非科尔莫哥洛夫概率理论
在主观解释中,贝叶斯主义者支持的更新规则是条件化:Pr更新(A)=Pr初始(AIE)(只须Pr初始)。后来,刘易斯(Lewis)对条件化给出了一个“历时的”荷兰赌论证。杰弗里(Jeffrey)条件化的规则或概率运动学将按照下式把主体的更新概率函数与初始概率函数联系起来:Pr更新(A)=∑Pr初始(AIE)Pr更新(Ei)。正统贝叶斯主义可以用下列原则刻画:(1)理性主体的“先验”(初始)概率符合概率演算;(2)理性主体的概率借助(杰弗里)条件化规则来更新;(3)对理性主体没有任何进一步的约束。
(科教作文网http://zw.ΝsΕAc.Com编辑整理)
但是正统贝叶斯主义遭到了他们的批评,说它的要求过分了:它对所有命题、逻辑全知者等等指派精确概率的要求一直被有些人看作是不合情理的理想化。这就导致了对上述原则(1)和(2)的各种放宽。原则(2)可以被弱化以容许除条件化之外的概率更新的其他规则——例如,Jaynes和斯基尔姆(Skyrms)认为在相关限制的条件下,对使熵极大化的概率函数加以修改。而一些贝叶斯主义者例如厄尔曼(Earman)则放弃了概率更新完全是由规则支配的要求。对原则(1)的放宽是一个大论题,它催生了一些非科尔莫哥洛夫概率理论。下面我们将简要地介绍一些这样的系统,并指出它们与各种逻辑之间的联系。
抛弃西格马域子结构科尔莫哥洛夫把Ω子集的一个非空聚合F称为Ω上的一个西格马域,当且仅当,F在取余运算和可数的组合之下闭合。法恩(Fine)在他的《概率论》(1973)论证说,概率函数的域应该是西格马域的要求是过分地限制的。例如,人们可能拥有对于种族和性别的达成共识的有穷材料,这些材料给出了关于一个随机选定的人是男人的概率Pr(M)和这个人是黑的的概率Pr(B)充分的信息,而没有给出关于这个人既是男人又是黑人的概率Pr(M∩B)的任何信息。因此他认为,应该抛弃西格马子结构,使概率函数的域不用限制于西格马域。
抛弃精确概率每一个科尔莫哥洛夫概率都是一个单独的数字。但是,假定一个主体的意见状态并不决定单独的概率函数,而是与这些函数的积相一致。在这种情况下,人们可以把该主体的意见表达为所有这些函数的集合;并且这个集合的每一函数都合法地对应于一种确定主体意见的方法,这种方法通常与区间值概率指派相吻合,但并非一定如此。例如,杰弗里在他的《概率与判断的艺术》(1992)和莱维(Levi)在他的《知识的冒险精神》(1980)中都持这一观点。库普曼在他的《概率基础》(1980)提出了关于可能会被认为是这种区间终点的“上界”和“下界”概率的公理。沃利在《关于不精确概率的统计推理》(1991)一书中也提出了对不精确概率的扩展研究。