论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
关于S-分析性的哲学讨论
S-分析性存在三个问题:
(1)我们的目的似乎是要得到一种绝对的分析性,即不带S的分析性,但是现在得到的只是S-分析性,S-分析性是否刻画了直观的分析性?
(2)在满足S(Q)=P[—]和S(P)=P的情况下,S(ヨx(Qx∧Px))是个S-有效式。这表明,存在这样的的公式,在某些涵义映射下它是S-有效的,在另一些涵义映射下它又是非S-有效的,相应地,存在这样的的命题,在某些情况下是分析的,而在另一些情况下又是综合的,那么分析命题与综合命题是否还有确定的界线?这似乎反倒支持了奎因的分析命题与综合命题无法划界的观点。
(3)S-分析性以S映射为基础。S映射的根据何在, 是否清楚明白,是否还需要说明?
先看问题(1)。我们在上面定义的只是S-分析性, 即总是相对于某个涵义映射S的分析性,可以称为相对分析性。去掉了S后的分析性,即对任意的S都是分析的这样的的分析性, 可以看作某种意义下的绝对的分析性,就是逻辑真。因为这种分析性对应于对任意S都S-有效, 即有效性。如果我们还要将逻辑真与狭义分析性加以区别的话,那么只能得到相对的分析性。用逻辑语义学来刻画分析性并不是要找出绝对的分析性,其根本目的是借助于这个工具使得我们可以将这一问题加以澄清。在这个刻画中,我们离不开涵义S映射, 这正是说明了任何分析命题都有涵义约定作为其分析性的一个先决条件。有涵义约定在先,恰恰说明了分析性的基本性质。借助逻辑语义学这个性质现在更为明确。 (转载自http://zw.NSEaC.com科教作文网)
再看问题(2)。的确,对于不同的映射S有不同的分析命题与综合命题的划界,从这个意义上说,分析命题与综合命题确实没有绝对的界线。应该说,奎因看到了这一点,甚至可以说他首次把这个问题明确地摆在人们前面,引起人们的注意。如果奎因的意见就此为止,那么他是正确的。但是从这里出发,他走得太远,认为分析命题与综合命题之间没有严格的界线。实际上,给定一个涵义约定S, 总会得到一些确定的分析命题与综合命题。而且我们只要使用一个语言,总要遵循该语言的某些约定,如果再考虑到具体的语言环境,可能还会有某些特殊的约定,因此总有某些在一定的约定下的分析命题与综合命题。这一点是不可否定的。尽管对于任何一个具体的约定来说都可以被替换或被取消,即都是相对的而不是绝对的,但总有约定存在,这是绝对的。我们不能从每个约定的相对性出发来否定在总体上约定存在的绝对性,即不能由每个命题的相对的分析性来否定分析命题存在的绝对性。事实上,逻辑真也有一定的相对性。相对于不同的逻辑,