数据挖掘技术在饭店营销中的运用毕业论文(2)
2015-12-12 01:09
导读:3 饭店使用数据挖掘技术的一个实例 下面这个例子是基于韩国豪华饭店的一个实例,旨在说明数据挖掘技术在饭店业的有效性和实用性,并借此案例进一步
3 饭店使用数据挖掘技术的一个实例
下面这个例子是基于韩国豪华饭店的一个实例,旨在说明数据挖掘技术在饭店业的有效性和实用性,并借此案例进一步简要阐明在饭店业使用数据挖掘技术的具体实施过程。
这个研究的目标是帮助饭店决策者建立饭店顾客的行为模式,并以此作为饭店制定可行营销战略的重要基础。
为了获取饭店顾客的行为模式,研究者选择了韩国汉城的11家饭店,并在光顾这11家饭店的顾客中精心挑选出281位顾客,对其进行了相关的问卷调查。问卷主要考察了顾客个人资料数据(年龄、性别、国籍、职业);顾客的行为数据(旅行的目的、过去光顾饭店的频率、选择的饭店、楼层类型、房间类型、支付方式……);顾客的心理或态度数据(对饭店服务员的礼貌、快速/平滑处理顾客投诉、预订的便利性、前台服务等方面的满意程度……)这三方面10多项数据。值得强调的是,研究者为模型选择的数据是基于对饭店业本身以及顾客、市场情况等方面透彻理解之上的,比如研究者所考察的顾客对于饭店提供的某些服务的满意度数据,是从已经被证实与饭店服务质量紧密相关的属性中挑选出来的。同时应指出,由于顾客满意度数据等是无法从饭店数据库得到的,所以研究者使用了问卷调查这一方式对建模数据进行了确认和完善。
在获得了建模所需的数据之后,研究者首先对收集的数据进行了清理,因为数据可能不准确必然导致数据挖掘模型实施的失败。同时还对一些机难以识别的数据进行处理,研究者主要是把对一些顾客属性数据转化为了简单的、便于处理的数字。比如:把顾客对各项指标的满意度属性都转化为:5=非常满意,4=比较满意,3=一般,2=比较不满意,1=完全不满意;饭店把性别属性转化为0=男性,1=女性;把顾客目的转化为1=商务旅行,2=旅游。
(转载自http://zw.nseac.coM科教作文网)
针对这个研究的目标———预测顾客在饭店选择、房间类型选择、支付方式等上的顾客行为模式,我们需要挖掘顾客行为模式与其个人信息、对饭店各项服务或设施的满意度情况之间的相互关系。而挖掘出的信息的商业价值在于为饭店经理人提供决策依据。所以,挖掘出的信息必须是饭店经理人容易理解的。这样,信息最终才能转化为饭店的优势竞争力。
正是由于上述各种原因,研究者在诸多数据挖掘技术中选择了结构和生成规则易于理解的决策树。生成决策树的过程如图所示。研究者最终使用SPSS的数据挖掘工具Clementine还是挖掘出了50多条有关规则。
挖掘出的这50多条规则中,有一些规则是比较明显的,是有经验的饭店管理者在管理工作中已经发现或是可以察觉的规则;而另一些规则却是潜在的、是饭店管理者不易察觉或无法察觉的。同时,挖掘出来的这50多条规则并不一定都是有用的或是有意义的,在管理者具体把这些规则用于实践中时,不同的商业目标往往需要不同的规则作为基础。
比如,研究者挖掘出了如下有关顾客光顾情况的规则:若顾客为30多岁的男性或30~40多岁的女性,并已经光顾过某个饭店4次,那么这位顾客很有可能再光顾这家饭店或与之类似的饭店;而40多岁的男性顾客已经光顾过某家饭店4次,则不太可能再次光顾这家饭店或与之类似的饭店;光顾过某家饭店多于5次的女性顾客很可能再光顾这家饭店或与之类似的饭店10次以上;如果顾客已经光顾过某家饭店2次,而且他住在饭店的标准层,又是直接在饭店预订房间的,同时他对于饭店房间的大小比较满意,那么这位顾客很可能再光顾这家饭店或与之类似的饭店5~9次。
上述有关顾客光顾情况表明:这家饭店的管理者在对有价值顾客进行定位时,可以首先排除已经光顾过本饭店4次的40多岁的男性顾客,并把已经光顾过本饭店5次以上的女性顾客定位为最有价值顾客,同时把已经光顾过本饭店4次的30多岁的男性和30~40多岁的女性定位为比较有价值顾客。这样,管理者就可以通过诸如仅针对有价值顾客进行常客奖励计划,以保留核心顾客,培养其忠诚度;同时饭店还可以注意顾客预订房间的方式和选择的房间类型,并使饭店房间的布置更显宽敞来提高顾客满意度,着重对直接预订标准层房间,且已经光顾过饭店两次的顾客进行顾客有效的保留措施。