基于联结主义的连续记分IRT模型的项目参数和被(3)
2014-02-25 01:18
导读:4.2 预备实验 由于在正式对神经网络进行训练以前,对于要用什么样的模式来训练没有任何先验的知识,为此先进行预备实验。和正式实验的步骤一样,首
4.2 预备实验
由于在正式对神经网络进行训练以前,对于要用什么样的模式来训练没有任何先验的知识,为此先进行预备实验。和正式实验的步骤一样,首先运用蒙特卡罗方法产生25个被试对15个项目的反应矩阵,用这一矩阵和相应的被试能力或项目参数组成4组训练模式,分别用以估计θ,a,b和c。在对被试能力进行估计时,将矩阵的行作为一组神经网络训练模式的输入部分,因为矩阵的一行数据就代表了一个被试对所有项目的反应;相应被试的θ值作为训练模式的输出部分,因为它代表了被试的能力值。在对项目参数进行估计时,将矩阵的列作为一组神经网络训练模式的输入部分,因为矩阵的一列数据就代表了所有被试对一个项目的反应;相应项目的a,b或c值作为训练模式的输出部分,因为它代表了项目的参数值。就用这些训练模式分别对4组神经网络进行训练,这4组神经网络分别对应于被试能力和项目的三个参数,每组有30个网络。然后,再用蒙特卡罗方法产生另外25个被试对另外15个项目的反应矩阵,并用已经训练过的网络对这个反应矩阵估计θ,a,b和c,记录下测试误差。其结果表明,虽然可以进行被试能力和项目参数的估计,但误差较大,无法达到实际应用的精确度。根据神经网络训练的一般规律,估计出现这一情况的原因有两条,一是训练模式太少,二是训练模式和测试模式之间没有任何联系,即没有用“锚题”或“锚人”把它们联系起来,改进的方法可以是增加训练模式,或运用一定的“锚题”或“锚人”方法,在本研究中先用“锚题”的方法进行试验(具体方法在进行正式实验时详述),试验的效果很好,然后进行下面的正式实验。
4.3 正式实验
(1)步骤1:产生训练矩阵和测试矩阵
(科教作文网http://zw.nseAc.com)
运用蒙特卡罗方法产生25个被试(称为第一组被试)对45个项目(称为第一组项目)的反应矩阵(称为第一矩阵),这一矩阵在下面的实验中将作为测试矩阵;从该45个项目中随机取出15个项目(称为第二组项目),再用蒙特卡罗方法产生另外25个被试(称为第二组被试),令它们和上述随机取出的第二组项目起反应,产生另一个反应矩阵(称为第二矩阵),用它作为训练模式的一部分,由此可见,训练矩阵和测试矩阵之间有15个项目作为“锚题”,如下面图1所示。
附图
图1 被试、项目和反应矩阵
图1中的第三组项目和第三矩阵将在下面作解释。
(2)步骤2:建立能力训练模式
用“第二矩阵”中的每一行作为一个模式的输入,其相应的25个第二组被试的能力值作为输出,组成能力训练模式,对一组神经网络(共30个,称为第一组神经网络)进行训练。
(3)步骤3:建立能力测试模式并进行测试
将“第一矩阵”中的每一行作为一个模式的输入,相应的第一组被试的25个能力值作为输出,组成能力测试模式,用上述经过训练的第一组神经网络对其进行测试。这时,实际上是神经网络对第一组被试的能力值进行估计。然后,将估计值和真实值进行比较,记录下测试误差,如表1左边第1列所示,要注意的是,表中记录的是30个网络的测试误差实际值,根据公式可见,它是所有输出结点和所有测试模式的误差总和。由于本研究中只有一个输出结点,有25个测试模式(因为有25个被试),因此要将表中的测验误差实际值除以25,得到对单个测试模式的测试误差,然后,再计算其平均数M和标准差SD,结果如表2所示,可以看出测试误差是比较小的。由此可见,当测试模式中有部分项目(本例中为15个项目)和训练模式相同时,经过训练的神经网络可以对被试的θ进行很好的估计。应该指出的是,测试模式和训练模式中没有被试是重复相同的,这说明经过训练的神经网络确实可以对新的被试进行能力估计。
(转载自中国科教评价网http://www.nseac.com) 表1 测试误差
θ a b c
0.129 2.239 2.982 0.065