论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
首先,学生从“听”数学的学习方式,改变成在教师的指导下“做”数学。过去被动地接收现成的数学知识,而现在象“研究者”一样去发现探索知识。实践表明,通过实验,学生对有关知识的印象比过去死记硬背要深刻得多。同时由于学生通过实验、观察、猜想、验证、归纳、表述等活动,他们不仅形成对数学新的理解,而且学习能力得到了提高。
其次,数学实验缩短了学生和数学之间的距离,数学变得可爱有趣了。人们普遍认为数学之所以学,是因为数学的“抽象性”与“严谨性”,而这正是数学的优势。正由于数学的抽象性,它才能高度概括事物的本质,也才能在广泛的领域得到应用。正由于数学语言和推理的严谨,不管还是社会科学,当从定性研究进入定量研究时都要求助于数学。那么数学就非得板起严肃的面孔,使人敬而远之吗?数学就不能深入浅出,使一般人容易理解吗?现在机创设的数学实验似乎开辟了这样一条新新路。通过“问题情景——数学实验——课堂交流——课堂操作课堂练习”这种新的学习模式,学生可以理解理解问题的来龙去脉,以及它的发现及完善过程,从感觉到理解,从意会到表述,从具体到抽象,从说明到证明。一切都是在学生眼前发生的,抽象得易于理解,严谨得合情合理。
关于开放探索性问题,需要提供一个便于学生装探试环境,有时又需要创设富于启发性的问题情景。有了计算机情况就和传统教学大不一样了。提出同一个问题:“顺序连接四边形各边中点围成什么图形?”在计算机屏幕上显示的效果就比过去灵活的多。在“几何画板”的支持下,可以在屏幕上给出一个动态的四边形,它在运动的过程中忽而是凸四边形,忽而是凹四边形;四边中点连线组成的四边形也是不断变化的,可能是一般的平行四边形,也可能是特殊的平行四边形。在这种情景下我们可以给学生更多的思考空间,因为为问题可以是非常开放的,我们可以通过设计数学实验引导学生探究怎样的条件将导致何种结论。又如正方体的截面问题,在屏幕上我们问:“设想一把无比锋的刀,猛地朝一个正方体的物体砍下去,截面是什么图形?”给学生留出猜测的时间之后,让学生装操作计算机。计算机可以用不同的速度对此动态模拟的图景,显示出不同形状的截面,并由此引发出一系列能激发学生兴趣的有关截面的问题。
参 考 文 献
1.《新课程中课堂行为的变化》
2.《数学课程标准》
3.《第三种科学方法与计算数学》徐福臻 著
内容来自www.nseac.com