关于相对论与其解的时空分析 (1)(4)
2013-05-17 01:13
导读:王仁川 广义相对论引论 中国科学技术出版社 1996 俞允强 广义相对论引论 北京大学 出版社 1997 赵峥 黑洞的热性质与时空奇异性 北京大学出版社 1999 附 录
王仁川 广义相对论引论 中国科学技术出版社 1996
俞允强 广义相对论引论
北京大学出版社 1997
赵峥 黑洞的热性质与时空奇异性 北京大学出版社 1999
附 录
(用时空对称理论解释光子轨线的引力偏折和水星近日点进动)
广义相对论中求质点和光子的轨道方程时,取球坐标,认为运动满足于
, (1)
协变动量 和 是守恒量,有
(2)
E和L的物理意义,为观测者所测到的质点或光子的能量和角动量。
四维速度的归一条件 有
(3)
得到质点的轨道微分方程
(4)
光子的轨道微分方程
(5)
广义相对论用这两个轨道微分方程解释了光子的引力偏折和水星近日点
进动。
广义相对论用来解释引力红移的方法也一样适用于时空对称理论。这里
就不重复了。只讨论时空对称理论解释光子轨线的引力偏折和水星近日点进动。
因为时空对称理论是用真实观测值来解释时空的理论。用它得到的Schw-
arzschild解有
(6)
(7)
固有时的关系有
(8)
固有长度的关系有
(9)
为时空密度, 为时间密度, 为空间密度。
按固有时和固有长度来看,观测者在远离引力场的坐标系,观测引力场坐
标系有
(10)
是引力场坐标系固有时, 是远离引力场的坐标系固有时, 是引力场坐标系运动平面角。这样就有
(11)
因为两个坐标系之间的能量 ,角度 ,角动量 和长度 的比较有
(12)(能量守恒)
(13) ( 项为零)
(14) (坐标系之间固有时和固有长度的比较)
(15) (坐标系之间固有长度的比较)
代入(11)式有
(16)
四维速度的归一条件变为真实观测值有
(17)
将(16)式代入(17)式有
内容来自www.nseac.com (18)
, 这就是时空对称理论的引力场中的轨道微分方程。
能量E是远离引力场中的观测者观测到引力场中的能量,为引力场坐标系与无穷远处坐标系的能量差,数量级为 略去二级小量,时空对称理论的轨道微分方程成为相对论的质点轨道微分方程
(4)
对于光子而言,角动量 ,因为光子在弱引力场中走的几乎是直线,
可以认为光子绕无穷远处某点做圆周运动。
(4)式 略去小量后,得到相对论的光子轨道微分方程
(5)
这样,用时空对称理论就可以解释引力红移,光子轨线的引力偏折和水星日
点的进动了。
参 考 文 献
A.爱因斯坦 相对论的意义 科学出版社 1961
张镇九 现代相对论及黑洞物理学 华中师范大学出版社 1986
王仁川 广义相对论引论 中国科学技术出版社 1996
俞允强 广义相对论引论 北京大学出版社 1997
共4页: 4
论文出处(作者):