论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
如图3不难看出、同圆, 、同圆,我们再设光量子传播宽度为。
由相等圆心角的同心圆弧半径之比等于弧长之比,得到
不难看出垂直界面于点,于是有
又有
由以上三式我们得到
不难看出
所以在光以全反射临界角入射并发生全反射时发生的位移长度为
此位移或许就是我们所说的古斯—汉申位移,如果是这样我们便能通过光量子传播宽度的假设在光的全反射现象中解释发生古斯--汉申位移的原因并求出位移的长度。
2、发生折射,折射光线急剧衰减
如果此时边缘2的速度发生突变,就是说边缘2与分界面恰好切于介质1界面上一点时,边缘2速度突变为,与边缘1同速,则光量子传播不再偏转,边缘1和边缘2分别沿、在、点的切线方向传播,且分别为折射光的两个边,而此时两切线刚好平行于分界面,所以折射光平行于分界面,所以此时折射角为。一般来说我们做实验所用的介质1与介质2的分界面不可能是一个严格的平面(这里严格是绝对的意思),所以边缘2沿介质1的分界面表面传播时一旦遇见分界面的凹点时就会再次进入介质2,速度突变为,使光量子的传播再次发生偏转,从而使光量子再次进入介质2传播,折射光强度就会急剧衰减,但是由于凹点的位置及大小的随机性较大,所以再次进入介质2的光很难再进行准确测量。
这里的折射光也许就是我们所说的隐失波,此时波的穿透深度可以用光量子的传播宽度来表示。
3、光的反射定律的论证
在图3中,不难看出
于是我们就不难求出
即反射角等于入射角,这样在光的全反射现象中我们用光量子传播宽度的假设用一个光量子论证了光的反射定律。
4、光的折射定律的论证
由于折射角等于,所以折射角的正玄值为1
于是
由图不难看出
又有
由相等圆心角的同心圆弧半径之比等于弧长之比,得到
于是得到
即入射角与折射角的正玄之比为一常数,这样我们又通过光量子宽度的假设在光的全反射现象中用一个光量子论证了光的折射定律。
5、关于在反射过程中的半波损失的解释
1、掠入射时,光从光密介质到光疏介质时反射光无半波损失的解释。
在图3中我们可以看到光量子边缘1的实际路径大于边缘2的实际路径,使得两个边缘出现路程差,但由于边缘1的实际速度大于边缘2的实际速度,使得边缘1从传播到与边缘2从传播到用的时间相等,也就是说光量子的两个边缘虽然路程不等但是光程相等。这里需要指出:在此以前我们通常的几何光程没有考虑到光量子的传播宽度,但是要考虑的到光量子的传播宽度,这种计算方法有时就是不准确的。光的实际光程要以光量子的远边的光程来决定。在研究光从光密介质到光疏介质时反射光时我们计算的几何光程等于光边缘2的光程也等于光的实际光程,然后再通过几何光程计算预期的相位与观测到的相位(也就是实际相位)相符,所以我们就说光的反射光没有出现半波损失。
2、掠入射时,光从光疏介质到光密介质时反射光有半波损失的解释。
如果在图3中,介质1的绝对折射率大于介质2的绝对折射率,当光掠入射时,由于光量子的两边缘速度的差异,光量子本应该偏转进入介质2,但是由于介质2内的一些性质(我也不知道什么性质)使得光并没能进入介质2,反而被反射回介质1。(这种情况很难理解。)但是在这种情况下假设了光量子的传播宽度将比较好理解反射光的半波损失。在反射过程中光量子边缘1的实际路径大于边缘2的实际路径,两边缘出现路程差,由于边缘1在介质1中传播速度突然变慢为(这里是在介质1的绝对折射率大于介质2的绝对折射率的前提下的),但是如果边缘2的速度不发生突变仍为的话,的边缘1和边缘2将出现光程差,但是由于两边缘传播的同时性,光程差将是不被允许的,这就意味这边缘2必须降低到一个比更低的速度,也许只有这样该光量子才能不过被吸收,而是被反射。(不要问我为什么会这样,其实这就跟光从光疏介质入射到光密介质没发生折射而是发生反射一样不好理解,或许是由于光量子的某些微观结构能够识别介质1的某些性质而阻止了光量子的折射的发生,比如某一物体由于反射某一特定波长的光而呈现出特定颜色。)这样以来,光的光程将变长并等于光边缘1的实际光程,也等于变慢后的边缘2的实际光程,但是大于我们通过以前的方法求得的几何光程半个波长的时间。这时问题就出现了,由于我们求得的几何光程小于光线的实际光程半个波长时间,然后再通过几何光程计算预期的相位就会与观测到的相位(就是实际相位)出现不符,但我们坚信这种计算方法没有错误,于是我们就把这种现象描述为光经过反射后发生了相位跃变,同时反射光有半波损失。其实光并没有发生波长损失,只是延迟了半个波长的时间。
3、任何情况下,透射光都没有半波损失的解释。
由图1,光量子的光线边缘1的实际路程小于边缘2的实际路程,出现路程上的差异,但是边缘2的实际速度大于边缘1的实际速度,使得边缘2从传播到所用时间与边缘1从传播到所用时间相等,就是说两边缘路程虽然不等但是光程相等,我们通过以前方法求得的几何光程等于光线边缘1的几何光程,就等于光的实际光程,通过几何光程计算预期的相位与观测到的相位(就是实际相位)相符,所以我们就说透射光没有半波损失。
如果我的见解是符合实际的,那么很多像以上援引的光学现象将都比较好理解,并希望这一观点能给一些研究工作者带来一些方便。
另外,关于质量和能量如何扭曲时间的?
我认为:引力场的扰动使时间流逝。
一战过后,爱丁顿率领一个观测队到西非普林西比岛观测1919年5月29日的日全食,拍摄日全食时太阳附近的星星位置,根据广义相对论理论,太阳的重力会使光线弯曲,太阳附近的星星视位置会变化。爱丁顿的观测证实了爱因斯坦的理论。
我们同样可以通过光量子的传播宽度来加以证明,光量子的两个边缘在太阳引力场中出现时间的差异导致折射的发生:我们设想光量子的边缘1比光量子的边缘2更靠近太阳,他们以同等速度相对于引力场运动,同等于引力场相对于两个边缘的同速度扰动,由于光线边缘1所经之处的引力场强度大于边缘2的引力场强度,使得边缘1的时间比边缘2的快,但是光量子的两边光程相等使得光量子传播发生偏转,导致我们看到了光的引力偏移。还有就是我们看到的引力偏移后的光线一定是近线性偏振的,且偏振方向沿太阳半径方向!