论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
2 二维平板光子晶体
目前人工制作的光子晶体包括一维、二维和三维晶体.一维光子晶体主要应用于薄膜光学和光栅光学领域中,但受维度所限,折射率调制作用一般比较小.三维光子晶体现有的应用是作为微波波段的天线,而由于加工和集成化的困难,鲜有应用于光频段的实用三维光子晶体器件出现.对二维光子晶体而言,无论是在微波还是光频波段,其加工技术已经十分成熟,尤其是随着微纳米加工技术的不断,二维平板光子晶体器件性能更加可靠,此外由于其所利用的材质与已形成化生产的半导体光电材料一致,更为实现光电集成提供了可能.二维平板光子晶体的工作原理包括全反射效应与光子带隙效应,具体地说,就是在二维光子晶体与外界介质的接触面上,通过晶体材质与外界介质折射率差形成内全反射效应,将光子局域在晶体平板内部.在光子晶体平板面内,存在着二维光子带隙和导带的调控,因此,普通光子晶体通常的控制光子传播行为的手段都可以应用在二维平板光子晶体上二维平板光子晶体通常在硅、砷化镓和其他的半导体材料的薄膜上(薄膜厚度大约是晶格常数的1/2),利用先进的半导体微纳加工技术(如紫外曝光、电子束曝光、离子束刻蚀等)制作出周期排列的空气孔.晶体通常为三角晶格结构,因为它有较宽的光子带隙,而且经常做成悬挂在空气中的对称桥式构造,使得全反射效应最为明显.当晶格尺寸为400—500nm时,光子带隙的中心波长落于1550nm左右,该晶体能够用来制备光通信波段的微纳集成光电子器件.下面我们将比较具体地介绍二维平板光子晶体功能元件的工作原理.
对于完整的光子晶体而言,特定晶向上会出现导带与带隙.光子可以在导带中传播,在带隙中则不能存在.图3(a)给出了典型的二维平板光子晶体能带结构,图中灰色区域代表光锥以内的泄漏模式区域,处于泄漏模区域的光在长距离传播的过程中会逐渐因为耗散而消逝.在白色区域中,由连续点组成的线代表传播模,每一个频率对应的模式可能有一个或者多个,我们称其为单模或多模传播区域.但频率为0.26—0.32(c/a)的区域不存在任何传播模(a为晶格常数,c是真空中的光速),这一区域即为带隙.如何使带隙区域出现传播模,这就需要缺陷的作用.缺陷又分为线缺陷与点缺陷.线缺陷的出现使原先带隙区域出现部分通带使光子能够通过,从能带分布上显示为带隙变窄.如图3(b)中引入线缺陷后,两条导模分布出现在频率0.264—0.28及0.28—0.30(c/a)的区域,带隙宽度减小为0.02(c/a)[7].因为具备了上述有利条件,线缺陷常被用作光子晶体中的光波导.制成的完整的二维平板光子晶体如图4(a)所示,晶体材料的折射率呈现周期性的排布.该结构是我们小组利用院物理研究所的微加工仪器设备设计和制作的.当沿某一特定晶向破坏这种排布时就形成了线缺陷.图4(b)给出了晶体中沿三角晶格Γ-X方向去除一排空气孔后形成的W1波导传播模式的能带图,可以看出,该波导支持单模传播.图4(c)给出了完整晶体与线缺陷晶体的透过谱理论模拟对比,可以看到线缺陷极大地压窄了带隙范围,透过率大小却基本保持不变.点缺陷是通过破坏一个或多个光子晶体“原子”形成的,它的作用通常是使原先带隙的区域出现若干个缺陷态.光子可以在缺陷态中存在,因此点缺陷被当作是二维平板光子晶体中的光共振腔,提供光子传播过程中的局域或耦合机制.