近代物理系的高能物理研究现状(2)
2013-09-19 01:17
导读:该研究室自2001年以来,在国际国内重要学术 期刊 上发表SCI收录的涉及唯象理论研究的58篇,被引用达300余次.作出了一批为国际同行重视的研究成果.近年来
该研究室自2001年以来,在国际国内重要学术
期刊上发表SCI收录的涉及唯象理论研究的58篇,被引用达300余次.作出了一批为国际同行重视的研究成果.近年来该研究室取得了以下突出的研究成果:
1997年,在国际上首先解决了四点积分函数在相空间边缘发散点的数值困难[1].在国际上首次解决了三体末态过程的单圈阶幅射修正计算中的五点标量和张量积分的计算问题,完成了关于在直线对撞机上对H\|t\|t Yukawa耦合精确检验的理论研究[2].精确研究了强子对撞机上超对称chargino/neutralino伴随产生过程,以及t゜-H-产生过程的NLO阶QCD修正效应,为LHC新物理寻找提供了理论依据[3].在最小超对称模型下对pp→H±bc+X味道改变过程的精确计算,首次发现在squark的混合机制下,超对称QCD对H±bc耦合的修正可以使该产生过程的截面大大提高,这使得该过程成为发现带电Higgs粒子和味道改变效应的重要反应道[4].T宇称守恒和不守恒情况的最小Higgs模型下γγ→﹖﹖-h°+X过程中的新物理效应的计算和讨论[5],得到了可能在LC对撞机上观测到LH/LHT的效应,或者给出对LH/LHT参数更严格的限制[6].完成了四体、五体末态相空间高精度积分程序的,实现了不稳定粒子处理技术,六点单圈标量、矢量、张量积分函数的红外分离及正确的数值计算方法和程序,并通过了若干正确性检验.在此软件环境下完成了在带电或中性Higgs寻找过程中,可能测量到的γγ→t﹖-b゜-和e+e-→W+W-b゜-过程的QCD辐射修正计算工作.这为Higgs粒子寻找和top物理有关理论的精确检验提供了理论依据[7].
唯象理论组在国际上首先提出了在强子对撞机上通过超对称标量中微子双轻子共振态,探测R宇称破坏的实验物理分析方案,并计算了其QCD 辐射修正[8—12].该成果被Tevatron的两个实验合作组CDF和D0先后作为其探测双轻子高质量共振态的主要物理动机和数据分析依据在发表的
中引用.费米实验室Fermilab Today对这一研究成果进行了报道.该研究室对这一理论与实验结合的研究,不但在唯象理论研究方面,推动了对TeV强子对撞物理过程中QCD NLO效应的精确把握,而且在实验物理方面,促进科大D0组在径迹探测器触发方法研究、高亮度环境下高能/光子鉴别、量能器刻度等研究中做出了成果.该研究还促进了高能数据网格计算节点建设,该室建成了中国科大D0USTC网格群,并为D0合作组产生106模拟事例,为中国科大高能物理研究提供了1010以上的网格数据分析与处理能力,从而确保最终物理成果的获得.这些工作得到了D0合作组以及费米实验室的高度评价.韩良教授成为D0合作组Authorship Committee 7人委员会成员,负责审查合作组各单位成员作者资格.刘衍文博士成为费米实验室首批International Scientist Fellowship成员.第28次中美高能物理合作联合委员会会议,确定费米实验室继续支持中国科大D0实验物理研究.
(转载自科教范文网http://fw.nseac.com) 3 高能物理实验研究
高能物理实验研究始于1973年,在杨衍明、陈宏芳教授领导下,为云南高山站宇宙线测量研制多丝正比室.之后先后参加了德国DESY的MARK\|J实验,是CERN LEP的L3实验的发起单位之一.与此同时,被接受为LHC大型强子对撞机的CMS合作组和日本KEK的B 介子工厂Belle合作组的成员.与瑞士苏黎世联邦理工学院(ETHZ)合作成立了高能物理联合研究所.1991年正式参加中国院高能物理研究所BES合作组,成为国内大学中最早投入国内高能基地研究工作的BES成员,相继参加了BESII的物理分析和BESIII的建造与物理工作.2001年10月又被接收为美国BNL的STAR合作组成员.オ
3.1 为STAR合作组研制的飞行时间探测器和相对论性重离子碰撞(RHIC)物理研究
多气隙电阻板室(MRPC)是上世纪90年代后期欧洲核子研究中心(CERN) 的LHC-ALICE实验组首先发展起来的新型探测器.受
科学基金委员会委托,该研究室于2000年8月率先在国内开展MRPC研制.先后成功地研制了多种结构的MRPC,其中6气隙的MRPC时间分辨为60ps,对最小电离粒子的探测效率好于95%,达到国际先进水平;双层结构10气隙的MRPC,时间分辨好于50ps,探测效率大于99%,达到国际领先水平. 并成功地研制了第一个基于MRPC技术的STAR飞行时间探测器原型TOFr Tray,性能指标达到:平均时间分辨为85ps,探测效率好于90%,好于设计指标.并于2002年10月装入STAR探测器,参加了2003年度氘-金核(质心能量为200GeV/核子)和2004年度金-金核(质心能量为200GeV/核子及62.4GeV/核子)碰撞实验,有效提高了STAR探测器的粒子鉴别本领,对π/K分辨的动量区域由原来的0.6GeV/c扩展到1.6 GeV/c,对π,K/p分辨的动量范围由1.0GeV/c扩展到3 GeV/c.利用MRPC-TOF的数据和时间投影室带电粒子的电离能量损失的数据发展了一种可以鉴别高动量区π介子和质子的新技术,把STARπ探测器介子和质子的鉴别横动量区间扩展到12GeV/c[13].是第一个运用MRPC技术成功运行于大型高能核核碰撞物理实验的大面积飞行时间探测器,使一些原来很难开展但有重要意义的物理课题有可能进行,并获得了一些重要的物理结果.2006年4月,用于RHIC-STAR-TOF探测器的MRPC通过批量生产标准和标准的最后评审.MRPC生产稳定,质量越来越好,性能达到指标要求.RICE大学还专门做了报道.图1,2分别给出了200GeV AuAu对撞中TOF的强子鉴别和电子鉴别能力.