计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

量子算法与量子计算实验(2)

2013-10-24 01:09
导读:不难看出,fa,N(x)的变化是有规律的,其变化周期为r=4。知道了这个周期,就可以利用孙子定理:设A=ar/2+1,B=a r/2-1,其中r必须为偶数,且ar/2mod(N)1。求出A、B之后,再
 不难看出,fa,N(x)的变化是有规律的,其变化周期为r=4。知道了这个周期,就可以利用孙子定理:设A=ar/2+1,B=a
r/2-1,其中r必须为偶数,且ar/2mod(N)≠1。求出A、B之后,再分别求A、N和B、N的最大公约数(gcd)。设C=gcd
(A,N),D=gcd(B,N)那么一定有C×D=N,即N被成功地质因子化。Shor算法的关键在于求出大数N的余因子函数的周期r。不过,由于余因子函数的周期r不能在量子计算中被有效测出,因此在Shor算法中需借助量子离散傅立叶变换,将余因子函数的周期换成另一个可测的周期。
  2、Grover搜索:无序数据库的搜索
  Grover提出了一种算法:利用量子态的纠缠特性和量子并行计算原理,可以用最多n步的搜索寻找到所需项。Grover算法的思想极为简单,可用一句话“振幅平均后翻转”来概括。具体说来是以下几个基本步骤:
①初态的制备。运用Hadamard门将处于态|0>和|1>的各量子比特转化为等幅迭加态。
②设数据库为T[1,2,,N]共,n项。设其中满足我们要求的那一项标记为A。于是在T中搜索A类似于求解一个单调函数的根。运用量子并行计算可以将A所在态的相位旋转180°,其余各态保持不变。即当T[i]=A时,增加一个相位eiπ。
③相对各态的振幅的平均值作翻转。这一操作由幺正矩阵k1,k2…knD完成,其表达式为Dij=2/N,Dij=-1+2/N。
④以上②③两步可以反复进行,每进行一次,称为一次搜索。可以证明,最多只需搜索N次,便能以大于0.5的几率找到我们要找的数据项。Grover算法提出之后,引起了众人极大的兴趣。Grover算法中的翻转方法不仅被证明是最优化的搜索方式,而且也是抗干扰能力极强的方法。

  3、Hogg搜索:高度结构化搜索
  前面介绍过的NP问题中有一类名为可满足性问题(Satisfiability Problem,简称SA T问题)。一个典型的SA T问题是包括有n个变量的一个逻辑公式,要求给予其中每个变量一个赋值使逻辑公式为真。数学上已证明,解决SAT问题的代价是随着变量数的增加而呈指数型增长。然而对于某些简单的情况,人们可以利用问题中具有的规则结构来迅速准确地搜索出问题的解。例如对于1-SAT问题,用经典试探法进行搜索,找出解的代价为最多需用n步。对于量子计算而言,由于能进行量子并行计算,因而可以仅以一步的代价找出1-SAT问题的解。下面以有m个逻辑子句的1-SAT问题为例。与Grover搜索相似,我们先在n个量子比特上制备一个等幅迭加态作为初始态,即|Ψ〉=2-n/2∑n-1s=0|S〉。另外,我们需设计好两种幺正操作R和U,其中R为对角矩阵,其归一化对角元为Rss=2cos[(2c-1)π/4] m=偶数ic     (科教论文网 lw.nseaC.Com编辑发布)
   m=奇数。(3.3.1)式中的c(0 (3.3.2)其中d称为Hamming距离,d=d(r,s)=|r|+|s|-2|r∧s|,其中|r|和|s|分别表示r字节串和s字节串中含有比特为1的个数。|r∧s|表示r和s中共同含有比特为1的个数。

对于以上1-SAT问题,显然有m个变量是约束的,而剩余的n-m个非约束的变量则对应于2n-m个解。对于1-SAT问题,用Hogg算法能决定性地一步找到解。如果通过一步逻辑操作未能明确地发现解,则意味着该
问题无解。不难看出,Hogg搜索的效率远高于上节介绍的Grover搜索。这两种搜索的差别在于,Hogg搜索利用了数据库的结构信息,因而能将一个NP问题转化为P问题。而Grover算法解决不了N P问题,它相对于经典搜索只是提高了搜索效率。Hogg搜索的另一个优势在于具有强的抗消相干能力。由于它的逻辑步数少,因而消相干效应对其影响非常小。
  三、量子计算实验
  与量子计算理论方面的飞速进展相比,量子计算的实验进展则要慢得多。本章主要介绍二种体系:核磁共振和腔与原子体系。
  1、核磁共振(NMR)
  核磁共振技术是目前在量子计算领域使用最为频繁的实验手段。运用这一技术手段,操作作用在1023数量级的分子系综的自旋态上,通过测量,得到这些分子的平均自旋态。虽然每个分子的自旋都可能不尽相同,但通过spin-e2cho技术可以按我们的意愿改变个别分子的自旋方向。由于核磁共振体系实质上是一个宏观系综,因而外部环境对它的消相干的影响极小。且样品的核自旋处于近独立的状态,几乎不受电子和分子的热运动的干扰。但是,宏观系综原则上没有量子特性,只有纯粹的量子系综才具有量子纯态的特征。只有当它被制备到一个特殊状态—赝纯态时,才能完成量子计算的工作。下面举例介绍实现两量子比特的Grover搜索的实验。实验中所用样品为C-13同位素标记的氯仿HCCL3。实验中用碳和氢的核自旋来标记|1>和|0>,其中13C的中心共振频率约为125MHz,1H的中心共振频率约为500M Hz。实验体系的哈氏量为H=2πnhJ ICZ IHZ+PH,所以各步骤如Grover搜索所介绍的那样。比较实验和理论,可以发现实验中存在一些误差。这些误差主要来自磁场和射频场的不均匀、初始时间的校正和信号衰减等。


  2、腔与原子体系
  腔量子电动力学(C-QED)体系是另外一种可以进行量子计算的量子系统。腔量子电动力学体系之所以可以实现对两位量子信息进行处理量子系统,一个重要原因就是腔中的辐射场与原子具有很强的非线性相互作用,这种相互作用的演化导致腔场和原子体系的本征态处于纠缠态。腔量子电动力学体系包含光腔和微波腔。这里我们主要介绍微波腔体系中应用Rydberg原子与微波腔相互作用实现的条件量子相移门(QPG)。条件量子相移门(QPG)需要对两量子位的如下变换:
上一篇:基于超声波在有机废水处理中的应用研究 下一篇:论自由基生物学与物理学