土壤环境因子对有机污染物迁移转化的影响(2)
2013-10-26 01:06
导读:土壤温度影响土壤微生物和酶活性及土壤中溶质的运移,还影响土壤反应的速度和土壤呼吸速率,最终影响土壤中有机污染物的降解转化。在一定温度范围内
土壤温度影响土壤微生物和酶活性及土壤中溶质的运移,还影响土壤反应的速度和土壤呼吸速率,最终影响土壤中有机污染物的降解转化。在一定温度范围内,温度升高会促进土壤有机污染物的分解,但随着温度的进一步升高,土壤有机污染物对温度的响应程度降低。Miko发现,在平均温度为5 ℃时,温度每升高1 ℃将会引起全球范围内10%土壤有机污染物的丧失;而在平均温度为30 ℃时,温度每升高1 ℃将会使得有机污染物丧失3%[11]。
但是,在冷冻条件下关于土壤有机污染物的分解和微生物的活性还存在分歧。Neilson 研究了冷冻对碳和氮循环的影响,发现冷冻加快了土壤碳和氮的循环速率,但不同植被品种、土壤层次和冷冻程度所增加的幅度不同,而且在冷冻程度非常大时,会促进土壤呼吸和二氧化氮的流量和矿化。
2.3土壤pH值
土壤的pH值对有机污染物的吸附有很大的影响,一般来说,pH值越低,土壤对有机污染物的吸附能力越强。土壤酸碱性通过影响组分和污染物的电荷特性、沉淀溶解、吸附解吸和络合平衡来改变污染物的毒性,土壤酸碱性还通过土壤微生物的活性来改变污染物的毒性。pH值对有机污染物如有机农药在土壤中的积累、转化、降解的影响主要表现为:一是土壤的pH值不同,土壤微生物群落不同,影响土壤微生物对有机污染物的降解作用,这种生物降解途径主要包括生物氧化和还原反应中的脱氯、脱氯化氢、脱烷基化、芳香烃或杂环破裂反应等。二是通过改变污染物和土壤组分的电荷特性,改变两者的吸附、络合、沉淀等特性,导致污染物浓度的改变。
2.4土壤水分
土壤水分是土壤中水溶性成分的运输载体,也是土壤反应得以正常进行的介质。王彦辉认为森林土壤有机污染物的分解速率在很大程度上受控于环境条件,其中含水量起着决定性作用,最佳含水量为被分解物饱和含水量的70%~90%,极度干旱或水分过多都会限制土壤微生物的活动,明显降低土壤中有机污染物的分解速率[12]。但是,Olivier认为在淹水条件下有机污染物料的分解速率加快,在长期的淹水条件下厌氧微生物反复利用腐解发酵的有机物料,会导致较低的净残留碳的矿化[13]。这与淹水、嫌气条件下有机物料的分解速率慢于旱地、分解量低于旱地的传统概念不同。
(科教作文网http://zw.ΝsΕAc.Com编辑整理) 在非淹水条件下,温度对有机碳分解的影响随着分解时间的延长而逐步减小。淹水条件下培养7 d以后,温度对供试物料有机碳分解的影响不随培养时间的变化而变化。当土壤含水量为300、500 g/kg时,供试物料的有机碳分解最快,而土壤含水量为200 g/kg和淹水条件下的有机碳分解较慢,空白对照培养结果显示土壤有机碳的分解速率随着水分含量的提高而加快[14]。在相同的水热条件下,有机碳的分解量与土壤黏粒含量呈负相关。
不同的土壤含水量对土壤中植物残体的分解速率和土壤腐殖质组分(胡敏酸和富里酸) 数量的影响仍存在争议。由于常规研究土壤有机污染物动态变化的方法存在不足,所以可以通过同位素示踪方法(14C示踪法或13C丰度法)进一步定量研究。利用同位素示踪技术可以区分原有土壤有机质与外源有机物分解转化形成的土壤新有机质,从而了解土壤中植物残体分解转化的动态变化。
2.5土壤机械组成
土壤质地的差异形成不同的土壤结构和通透性状,因而对环境污染物的截留、迁移、转化产生不同的效应。由于黏土类富含黏粒,土壤物理性吸附、化学吸附及离子交换作用强,具有较强的保肥、保水性能,同时也把进入土壤中的污染物质的有机、无机分子、离子吸附到土粒表面保存起来,增加了污染物转移的难度。
在黏土中加入砂粒,可相对减少黏粒含量,增加土壤通气孔隙,可以减少对污染物的分子吸附,提高淋溶的强度,促进污染物的转移,但要注意到因此可能引起的地下水污染等问题。砂质土类的优点是有机污染物容易从土壤表层淋溶至下层,减轻表土污染物的数量和危害;但是有可能进一步污染地下水,造成二次污染。壤土的性质介于黏土和砂土之间,其性状差异