灯泡贯流式水电站厂房三维静(3)
2013-09-02 01:19
导读:副厂房必须便于同主厂房联系,还应注意运行人员的工作条件。为了充分利用尾水管基础结构以上的空间,副厂房布置在主机室的下游侧,这是灯泡贯流式机组
副厂房必须便于同主厂房联系,还应注意运行人员的工作条件。为了充分利用尾水管基础结构以上的空间,副厂房布置在主机室的下游侧,这是灯泡贯流式机组电站常用的格局。机旁盘、励磁盘宜布置在这里且与操作层同高程,便于运行管理。在尾水管上部布置副厂房节省投资,但是这样副厂房通风差、噪音大,工作环境差。尤其是有些尾水副厂房顶层兼作公路桥梁(如马迹塘水电站),汽车开过时振动、噪声都比较大。因此中央控制室、载波通信室、资料室等主要生产副厂房(这些需要运行人员8h连续工作的场所),不宜放在尾水平台上副厂房内,应放在靠近岸边安装场靠下游侧的副厂房内(如木京电站)。为改善下游侧副厂房的通风条件和采光条件,可将下游挡水墙向后移,使之与副厂房有一定的距离,这样可以在副厂房的墙上开设窗户,改善通风和采光条件(如都平电站、木京电站)。
(4)安装场布置
安装场面积的确定应按大修时放置机组各主要部件来考虑,也要适当考虑安装的要求,当电站要求几台机组同时安装时,应适当加大安装场的面积。根据几座已建电站的经验,安装场主要考虑转轮、配水环、转子、定子、主轴(包括推力轴承和导轴承)等五大件的组装和翻身所需场地,其他一些小部件,可在主厂房内进行。安装场长度取2倍的机组间距,便能满足要求。
1.4灯泡贯流式水电站厂房结构应力的研究方法
1.4.1厂房结构应力的研究的必要性
灯泡贯流式水电站厂房一般由上游挡水闸门、流道、下游挡水闸门、排沙孔、主厂房上部结构等部分组成,由于是由多个孔洞组成的复杂三维孔洞结构,作为挡水建筑物,要承受上、下游水平作用力,使河床式厂房的内力分布较其它型式的厂房更加复杂,而灯泡贯流式机组较轴流式相比,其机组型式、受力方式有自身特点,特别是对于厂内溢流式厂房使得厂房结构布置和受力条件更加复杂,设计中许多技术需要通过计算深入研究,为了全面了解各设计工况(特别是厂房表孔泄流情况)厂房坝段应力、位移状态,使厂房结构设计更加合理、安全、经济,采用整体三维静动力有限元计算是十分必要的。
(转载自http://zw.nseac.coM科教作文网)
通过整体三维静动力有限元计算,了解厂房流道的应力、变形、配筋及防裂情况;厂房表孔闸墩和底板的应力、变形、配筋及防裂情况;厂房上部结构的自振频率应大于表孔过流脉动优势频率,以防止共振;厂房流道、表孔边墩的自振频率同机组频率要相对错开,以防止共振。
1.4.2厂房结构静力的
对水电站厂房结构应力及稳定方法有:结构力学法、材料力学法和有限元法[52~56]。
结构力学法和材料力学法对电站厂房应力及稳定分析中比较简单,但是对于比较复杂的厂房结构过于简化计算模型将导致计算结果不能反映厂房结构的实际应力状态,尤其在某些应力状态比较复杂的部位由于过于简化而引起计算结果错误,而且结构力学法和材料力学法对于求解瞬态及动力学分析也比较困难。
有限元法是20世纪40年代提出的处理材料属性和边界条件较复杂的一种有效的离散化的数值方法,离散后的单元和单元之间只通过节点相联系,所有的力和位移都通过节点进行计算。利用有限元法对厂房结构进行应力分析计算有以下优点:(1)大型水电站厂房的物理模型制作不易,有些因素模拟困难,不能作过程仿真分析,而有限元模型则易于模拟;(2)有限元模型能突出构成建筑物本质特征的因素,便于分析了解建筑物的性能;(3)可以变动模型有关因素条件进行敏度分析,了解他们对厂房的程度及趋势,为改进设计提出启示;(4)能针对厂房的某一部分进行详细模拟,来计算结构中重要部位的应力分布状况;(5)能进行非线性分析、模态分析以及动力分析。
1.4.3厂房结构动力的研究方法[57]
动力学问题在国民和技术的中有着广泛的领域。最经常遇到的是结构动力学问题,它主要包括动力特性分析和动力时程分析两种类型。对水电站厂房的动力分析主要研究厂房结构在地震和机组震动作用下厂房结构的应力分布以及其稳定性。因此,对厂房结构的动力分析也就是抗震分析。目前,对水电站厂房动力分析的方法常有以下几种:
内容来自www.nseac.com (1)振型分解反应谱法