计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

超大规模集成电路铜互连电镀工艺-机电毕业论文(2)

2013-07-07 01:44
导读:化学镀同样可以得到性能优良的铜镀层[5,6]。但是化学镀铜通常采用甲醛做为还原剂,存在污染的问题。 4.铜互连工艺发展趋势 使用原子层沉积(ALD ,Atomic
化学镀同样可以得到性能优良的铜镀层[5,6]。但是化学镀铜通常采用甲醛做为还原剂,存在污染的问题。




4.铜互连工艺发展趋势

使用原子层沉积(ALD ,Atomic Layer Deposition)技术沉积阻挡层和铜的无种籽层电镀是目前铜互连技术的研究热点[7]。
在当前的铜互连工艺中,扩散阻挡层和铜种籽层都是通过PVD工艺制作。但是当芯片的特征尺寸变为45nm或者更小时,扩散阻挡层和铜种籽层的等比例缩小将面临严重困难。首先,种子层必须足够薄,这样才可以避免在高纵宽比结构上沉积铜时出现顶部外悬结构,防止产生空洞;但是它又不能太薄。其次,扩散层如果减薄到一定厚度,将失去对铜扩散的有效阻挡能力。还有,相对于铜导线,阻挡层横截面积占整个导线横截面积的比例变得越来越大。但实际上只有铜才是真正的导体。例如,在65nm工艺时,铜导线的宽度和高度分别为90nm和150nm,两侧则分别为10nm。这意味着横截面为13,500 nm2的导线中实际上只有8,400 nm2用于导电,效率仅为62.2%[7]。
目前最有可能解决以上问题的方法是ALD和无种籽电镀。使用ALD技术能够在高深宽比结构薄膜沉积时具有100%台阶覆盖率,对沉积薄膜成份和厚度具有出色的控制能力,能获得纯度很高质量很好的薄膜。而且,有研究表明:与PVD阻挡层相比,ALD阻挡层可以降低导线电阻[7]。因此ALD技术很有望会取代PVD技术用于沉积阻挡层。不过ALD目前的缺点是硬件高,沉积速度慢,生产效率低。
此外,过渡金属-钌可以实现铜的无种籽电镀,在钌上电镀铜和普通的铜电镀工艺兼容。钌的电阻率(~7 μΩ-cm),熔点(~2300℃),即使900℃下也不与铜发生互熔。钌是贵金属,不容易被氧化,但即使被氧化了,生成的氧化钌也是导体。由于钌对铜有一定的阻挡作用,在一定程度上起到阻挡层的作用,因此钌不仅有可能取代扩散阻挡层常用的Ta/TaN两步工艺,而且还可能同时取代电镀种籽层,至少也可以达到减薄阻挡层厚度的目的。况且,使用ALD技术沉积的钌薄膜具有更高的质量和更低的电阻率。但无种籽层电镀同时也为铜电镀工艺带来新的挑战,钌和铜在结构上的差异,使得钌上电镀铜与铜电镀并不等同,在界面生长,沉积模式上还有许多待研究的问题。 (科教作文网 zw.nseac.com整理)

5.结语

铜互连是目前超大规模集成电路中的主流互连技术,而电镀铜是铜互连中的关键工艺之一。有机添加剂是铜电镀工艺中的关键因素,各种有机添加剂相互协同作用但又彼此竞争,恰当的添加剂浓度能保证良好的电镀性能。在45nm或更小特征尺寸技术代下,为得到低电阻率、无孔洞和缺陷的致密铜镀层,ALD和无种籽电镀被认为是目前最有可能的解决办法。此外,研究开发性能更高的有机添加剂也是途径之一,而使用新的电镀方式(比如脉冲电镀)也可能提高铜镀层的质量。

参考文献
[1]Tantavichet N, Pritzker M.Effect of plating mode, thiourea and chloride on the morphology of copper deposits produced in acidic sulphate solutions [J]. Electrochimica Acta, 2005, 50: 1849-1861
[2]Mohan S, Raj V. The effect of additives on the pulsed electrodeposition of copper [J]. Transactions of the Institute of Metal Finishing, 2005, 83(4): 194-198
[3]Y. Lee, Y.-S. Jo, Y. Roh. Formation of nanometer-scale gaps between metallic electrodes using pulse/DC plating and photolithography [J]. Materials Science and Engineering C23 (2003): 833-839
[4]Song Tao, D Y Li.Tribological, mechanical and electrochemical properties of nanocrystalline copper deposits produced by pulse electrodeposition [J]. Nanotechnology 17 (2006) 65–78
[5]王增林,刘志鹃,姜洪艳等. 化学镀技术在超大规模集成电路互连线制造过程的应用 [J]. 电化学, Vol.12 No.2 May 2006 :125-133
[6]Rajendra K. Aithal, S. Yenamandra and R.A. Gunasekaran, etc. Electroless copper deposition on silicon with titanium seed layer [J]. Materials Chemistry and Physics 98 (2006) 95–102
[7]45nm铜工艺面临的挑战. Peter Singer, Semiconductor International [J]. Jul. 2004
上一篇:纺机中的微机远程多电机同步传动控制系统-机电 下一篇:没有了