计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

智能天线及其在无线通信中的应用-机电毕业论文(2)

2013-07-30 01:03
导读:与自适应天线并没有本质上的区别,但是由于其使用的场合不同而具有显著的差异:自适应天线主要应用于雷达系统的干扰抵消,一般地,雷达接收到的干扰信
与自适应天线并没有本质上的区别,但是由于其使用的场合不同而具有显著的差异:自适应天线主要应用于雷达系统的干扰抵消,一般地,雷达接收到的干扰信号具有很强的功率电平,并且干扰源数目与天线阵列单元数相当。而在无线系统中,由于多径,到达天线阵列的干扰数目远大于天线阵列单元数,同时其功率电平一般都小于直射信号。图2显示了典型的十单元半波长均匀直线阵列,在不同的应用场合中方向图的比较(图中干扰源分别位于±75度和±35度)。

  分集接收是无线通信系统常用的抗多径衰落技术方案。事实上,分集技术利用了阵列天线中不同阵元耦合得到空间信号的弱相关性。常用的分集技术有:空间分集、极化分集、频率分集和角度分集。N单元的智能天线实质上也可等效为,由N个空间耦合器按优化合并的准则构成的空间分集阵列。从这个意义上讲,智能天线是传统的分集接收的进一步发展。例如:小区的扇区化技术即可认为是一种简化的固定预分配的智能天线系统。表1对智能天线与分集技术的特点做了详细比较。

  无线通信系统常常要求天线具有窄的主瓣宽度、高增益和低的付瓣电平。但是对一定结构的天线而言,上述两个要求是矛盾的。事实上,天线阵列的方向图等于单元方向图和阵列因子的乘积。因此选取适合的阵列图案和单元方向图是智能天线的一个重要研究内容。平面任布阵列是一种具有很强应用背景的实现方案。对于给定阵列单元数量的阵列分布,如果其占据的几何空间越大,则形成尖锐主瓣波束的能力越强。例如,对一个10单元的直线阵列,当主付瓣功率电平差为40dB时,主瓣宽度为40°。

  三、智能天线在无线通信系统中的应用

  在传统的无线通信系统中,由于无法确定移动用户的位置而不得不采用全向发射天线。实际上只有很小部分的信号被移动用户截获,这不仅造成能量的损失,更为严重是构成对其他用户人为的干扰,从而导致系统容量和信干噪比的下降。采用智能天线的目的,就是要在基台与移动用户之间建立一条能量相对集中的无线链路。为实现上述目标,智能天线系统需完成以下两大任务:

  1.能实时感知电磁,包括DOA测向、谱估计、从接收到的信号中分离出直射信号和多径信号;

  2.后处理过程,包括信道分离、抗多径干扰和衰落。该处理过程取决于算法的收敛速度和稳定性,以及DSP的处理速度。在此,我们给出表征系统容量的单位:

  bit/s/Hz/unit-area。该参数表示在给定发射功率、给定频谱范围内信号的传输速率。系统容量的提高表现在两个方面:(1)对于用户集中的都市区,在给定小区范围内能容纳更多的移动用户;(2)对于用户稀疏的郊区,在保证用户通信质量的前提下,扩大小区的服务范围。智能天线对系统容量的提高有以下两条途径:

  1.利用智能天线的波束成形和自适应测向跟踪能力,实时地形成窄的主瓣波束对准所需信号,在其他方向尽量压低付瓣增益。以此来代替传统的全向天线。智能天线提高了接收信号的信干噪比,从而提高了系统容量。此时对应单用户算法。

  2.把智能天线等效为空域滤波器,实现空分多址传输,即所谓的SDMA。此时要采用多用户检测算法。需要说明的是,SDMA并不是与FDMA、CDMA、TMDA等同的多址方式,而是附加在上述多址方式上的优化方案。

  要精确地计算智能天线对系统容量的提高是十分困难的。首先,必须确定小区用户的分布情况、小区的无线传播模型、智能天线的方案与算法,并结合具体的通信体制加以讨论。目前已有许多文献进行有益的探索。这是智能天线研究的最重要的课题之一。

  下面我们来定性地分析SDMA系统的性能。事实上,目前的移动通信体制基本上都是上行受限的系统。也就是说,上行链路与下行链路是不平衡的。这是由于基台和移动台的结构造成的。例如,假设基台发射功率为20W,天线增益17dBi,此时基台为1kWEIRP。而移动台为1W EIRP,天线增益为0dBi,在此假设条件下,上行链路与下行链路的不平衡度为13dB。在900MHz或1800MHz频段,17dBi增益的天线已接近工程应用的上限。因此要缩小上下行链路的不平衡度,唯一的方法是减小基台发射功率。采用智能天线后,能很大程度上缓解上下行链路的不平衡度。对于没有多径传播的理想情况下,采用十单元的阵列天线将使上下行链路的不平衡度减少至3dB。

  另一方面,由阵列天线获得的SNR的提高可以等效为基台服务范围的增加。对于m单元的阵列天线与单天线相比,其基台服务范围增加m1/α倍。

  当然,上述分析是理想情况下的。但在实际的移动通信系统中,同波道干扰和多径传播与噪声相比,是影响系统性能的更为重要的因素。同时智能天线也能改善系统的SINR。当-90dBm的直射信号与-95dBm的干扰分别以不同角度入射到天线阵列时,假设系统噪声为-120dBm,此时系统SINR大约为5dB。采用十单元的直线阵列天线后,干扰信号将受到抑制,系统的SINR可以提高到40dB。如图3所示。

  对于由移动用户附近形成的时间选择性衰落信号,其到达天线阵列的入射角分布较集中。智能天线则很难处理,此时宜采用时域的处理方法,例如RAKE接收机。

  对于空间选择性衰

上一篇:视听电子邮件系统的设计与实现-机电毕业论文 下一篇:基于LabVIEW的虚拟模电实验的构建——调制解调器