机电一体化技术在汽车中的应用探究-机电毕业论(2)
2013-09-19 01:17
导读:20 世纪90 年代中期到现在。 从20 世纪90 年代中期到现在,随着微电子技术的快速发展,及与汽车工业的紧密相连,汽车机电一体化技术已发展成熟,强调
20 世纪90 年代中期到现在。
从20 世纪90 年代中期到现在,随着微电子技术的快速发展,及与汽车工业的紧密相连,汽车机电一体化技术已发展成熟,强调了整体的机电一体化协调匹配设计思想,开始广泛应用计算机网络技术和信息技术,使汽车更加自动化、智能化。
随着微电子技术和传感器技术的应用,汽车的机电一体化使汽车焕然一新。当今对汽车的控制已由发动机扩大到全车,例如实现自动变速换挡、防滑制动、雷达防碰撞、自动调整车高、全自动空调、自动故障诊断及自动驾驶等。汽车的机电一体化的中心内容是以微机为中心的自动控制改善汽车的性能、增加汽车的功能,实现汽车降低油耗、减少排气污染、提高汽车行驶的安全性、可靠性、操作方便和舒适性。汽车行驶控制的重点是:1)汽车发动机的正时点火、燃油喷射、空燃比和废气再循环的控制,使燃烧充分、减少污染、节省能源;2)汽车行驶中的自动变速和排气净化控制,以使其行驶状态达到最佳化;3)汽车的防滑制动、防碰撞,以提高行驶的安全性;4)汽车的自动空调、自动调整车高控制,以提高其舒适件。
4 机电一体化技术在汽车中的应用汽车的电子化首先从电源系统开始。原来的发动机都是直流发电机,后来被交流发电机和硅二极管的组合所取代,使充电效率和可靠性大幅度地提高。此后,电压的调整也由固体电路的调整器代替了机械式电压调整器,进而在发动机点火装置的配电器上也由原来的机械式的凸轮开关变为功率晶体管。
4.1 发动机微机控制系统图1 为用于降低燃料费用的发动机微机控制系统的原理简图。发动机控制单元(ECU:Engine Control Unit)的核心是通用微处理器或者是为汽车发动机专门设计的大规模集成电路(LSI)。从各个传感器得到的模拟电压信号和从发动机输出轴得到的脉冲信号都输入到ECU。模拟信号通过模拟数字(A-D:Analog to Digital)转换器转换为数字信号。以这些信息为基础,在ECU 内对最佳空气燃料比、点火时间、排气再循环率(EGR:Exhaust Gas Recirculating)等进行计算,将计算结果作为控制燃料喷射阀和点火装置等的驱动信号输出,用以控制空气质量和燃料质量之比(即空气燃料比)。
(转载自http://zw.NSEAC.com科教作文网)
当空气燃料比增大时,燃料稀薄,点火困难;反之,当空气燃料比减小时,由于氧气不足,在排放的气体中没有充分燃烧的碳化氢(HC)和一氧化碳(CO)含量增加。因此,将空气燃料比控制在最佳状态对于发动机的启动、预热、加速、减速、制动、空转等各种运动状态及其正常负荷则十分重要。
4.2 汽车激光雷达自动防撞微机控制系统激光—单片机组合的汽车防按系统,能在正常行驶速度下或慢速倒车时检测和显示前、后方一定距离内有无障碍物,并在必要时报警,从而有效防止交通事故的发生。该系统主要由计算机控制的测量车间距离的激光测距雷达、中央处理器、汽车前后环境状况监测雷达及显示器、发光部、受光部、车速传感器和速度控制器等组成。其控制系统,如图2 所示。
激光测距雷达安装在汽车前部格栅中心。
光学天线发射的激光束遇到前面的障碍物后,产生向后散射信号,同样被光学天线接收,并调制出距离和方位信息。不断输出的距离和方位信息经中央处理器分析,可以判断前面物体运动与否,计算出它相对本车的速度及车间距离,并判断它是否有可能与本车接触,从而决定本车最安全的行驶速度。当可能有危险发生时,系统触动报警装置,发出报警信号。
4.3 电子控制的自动变速器自动变速器是为降低变速器的功率损耗,提高动力传递系统的有效功率,增加变速挡数以适应汽车行驶条件的最佳速比,实现汽车的省能、省力、安全、舒适之目的而出现的。
图3 为用电子控制实现变速器自动换挡的程序控制原理框图。发动机的工作状况由各种传感器进行检测,所获得的信息输入到电子控制装置进行处理,并根据换挡信息、程序开关及自动跳合开关的信息,由电子控制装置选择满足行驶条件的最佳档次信息,并被变换为控制电—液执行元件的液压变量来控制换档。自动变起器的监潞电路可对系统电子控制装置进行自检及失效监测,即在行驶前对所有电路进行检测。若汽车起动后,报警灯处于熄灭状态,说明其功能正常;反之,系统则存有故障,自动变速器进入非电控程序状态,此时,虽然已失去电子控制的优化功能,但是变速器仍能进行工作。
(科教作文网http://zw.ΝsΕac.cOM编辑)
4.4 ABS 系统为了使汽车在行驶过程中以适当的减速度降低车速直行停车,保证行驶的安全性,汽车上均装有行车制动器。起初只在后轮上装有制动器,但随着汽车质量和车速的提高,仅靠后轮制动不足以提高充分的制动力,这样才发展到在前轮上安装制动器。人们通过对制动时轴荷的动态转移、前轮增重和后轮减重的认识,且后轮先抱死更易造成汽车的方向失控,而着手研制能限制汽车后轮制动装置———汽车制动防抱死装置(Antilock Braking System,ABS)。
其基本功能是可感知制动轮每一瞬时的运动状态, 并根据其运动状态相应地调节制动器动力矩的大小,避免出现轮上的抱死现象。
ABS 系统是电子控制技术在汽车上最突出的一项应用,可使汽车5 机电一体化技术发展趋势5.1 光机电一体化方向一般机电一体化系统是由传感系统、能源(动力)系统、信息处理系统、机械结构等部件组成的。引进光学技术、利用光学技术的先天优点,就能有效地改进机电一体化系统的传感系统、能源系统和信息处理系统。
5.2 柔性化方向未来机电一体化产品,控制和执行系统有足够的“冗余度”,有较强的“柔性”,能较好地应付突发事件,被设计成“自律分配系统”。在这种系统中,各子系统是相互独立工作的,子系统为总系统服务,同时具有本身的“自律性”,可根据不同环境条件做出不同反应。其特点是子系统可产生本身的信息并附加所给信息,在总的前提下,具体“行动”是可以改变的。这样,既明显地增加了系统的能力(柔性),又不因某一子系统的故障而影响整个系统。
5.3 智能化方向今后的机电一体化产品“全息”特征越来越明显,智能化水平越来越高。这主要得益于模糊技术与信息技术(尤其是软件及芯片技术)的发展。
(科教论文网 Lw.nsEAc.com编辑整理)
5.4 仿生物系统化方向今后的机电一体化装置对信息的依赖性很大,并且往往在结构上是处于“静态”时不稳定,但在动态(工作)时却是稳定的。这有点类似于活的生物:当控制系统(大脑)停止工作时,生物便“死亡”,而当控制系统(大脑)工作时,生物就很有活力。就目前情况看,机电一体化产品虽然有向仿生物系统化方向发展的趋势,但还有一段漫长的道路要走。
5.5 微型化方向目前,利用半导体器件制造过程中的蚀刻技术,在实验室中已制造出亚微米级的机械元件。当这一成果用于实际产品时,就没有必要再区分机械部分和控制器部分了。那时,机械和电子完全可以“融合”,机体、执行结构、传感器、CPH 等可集成在一起,体积很小,并组成一种自律元件。这种微型化是机电一体化的重要发展方向。
[参考文献]
[1] 王静.浅析机电一体化技术的现状和发展趋势.同煤科技,2006(4);
[2] 石美峰.机电一体化技术的发展与思考.山西焦煤科技,2007(3);
[3] 李建勇.机电一体化技术.北京科学出版社,2004;
[4] 李运华.机电控制.
北京航空航天大学出版社,2003;
[5] 寇国瑗.汽车发动机无分电器微机控制点火系.汽车技术,1996(1);
[6] 吴基安,徐峰.ABS 及其在我国的发展现状.世界汽车,1994(5)