论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
针对上述情况,如何对数据与信息快速有效地进行分析加工提炼以获取所需知识并发挥其作用,向计算机和信息技术领域提出了新的挑战。其实计算机和信息技术发展的过程,也是数据和信息加工手段不断更新和改善的过程。早年受技术条件限制,一般用人工方法进行统计分析,和用批处理程序进行汇总和提出报告.在当时市场情况下,月度和季度报告已能满足决策所需信息要求。随着数据量的增长,多渠道数据源带来各种数据格式的不相容性,为了便于获得决策所需信息,就有必要将整个机构内的数据以统一形式集成存储在一起,这就是所谓数据仓库(data Warehousing).它不同于只适用于日常工作的数据库.它是为了便于分析针对一定主题(Subject-oriented)的集成化的 时变的(time-Variant即提供存贮5-10或更老的数据,这些数据不再更新,供比较以求出趋向及预测用)非破坏性(即只容易输入和访问不容许更新和改变)的数据集中场所。数据仓库的出现,为更深入对数据进行分析提供了条件,针对市场变化的加速人们提出了能实时分析和报表的在线分析手段OLAP(On Line Analytical Processing),它是一种友好而灵活的工具,它能允许用户以交互方式浏览数据仓库对其中数据进行多维分析,能及时地从变化和不太完整的数据中提出与企业经营动作有关的信息。例如能对数据中的异常和变化行为进行了解,OLAP是数据分析手段的一大进步,以往的分析工具所得到的报告结果能回答“什么”(What),而OLAP的分析结果能回答“为什么”(Why)。但上述分析手段是建立在用户对深藏在数据中的某种知识有预感和假设的前提下。而由于数据仓库(通常数据贮藏量以TB计)及联网界面上的数据来源于多种信息源,因此其中埋藏着丰富的不为用户所知的有用信息和知识,而要使企业能及时迅速准确地作出经营动作的决策,以适应变化迅速的市场环境,就需要有一种基于计算机与信息技术的智能化自动工具,来发掘埋藏在数据中的各类知识。这种手段不应再基于用户假设,