论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
图4 影像分割
fig.4 image segmentation
最“粗”的是划分的工作区域范围(level3),然后是以道路和水系的范围做约束的分割面(level2),最后是根据光谱和专题图的“精细”分割(level1)。
3.2.3 分类体系的建立及特征分析
分类的目标是提取绿地,绿地的范围和信息主要是从level3上来获取,但是专题数据中包含的一些信息对绿地提取非常有用,比如,在level2中,已经明确为道路和水系的部分,就不需要进行分类的判别了,所有在level3上,先划分为:主干水体、道路、非水体和主干道路三种类别。在“非主要道路和水体”的类别当中再细分为房屋、树木、草地、阴影、街道等,如图。
图5 影像分类
“草地”在红色波段,灰度值主要集中在绿色波段。对于同物异谱的情况,可以通过增加更细致的分类来处理,例如房屋类别可以用房屋1、房屋2等类别来替代,每个类别的光谱特性分别描述。实验中各种类别的光谱特征描述如表。
3.2.4 获取分类结果
ecognition采用模糊分类的机制,通过对特征的描述,计算不同对象隶属各个分类的隶属度,最后完成分类的过程。实验的结果如图6所示(局部)。
图6 分类结果
fig.6 classification result
其中绿地的面积包括“树木”和“绿地”这两种类别的面积。
3.3 成果计算
计算采用象素数量来反映分类的面积。在分类完成后,通过各个区域分类面积的汇总,可以获得主干道路面积、草地面积、树木面积、房屋面积、街道面积、阴影面积。
其中树木面积和房屋面积可以算做绿地面积,而阴影面积,可以认为它包含了其他分类的面积。设绿地面积为,则有
城市计算范围的面积,设为绿地覆盖率,于是有
4、小结
计算城市绿地覆盖率的工作,从方法上看并不复杂,但是作为一项具体的工作却并不简单。传统的作法需要花费大量的人力和时间,本篇文章采用高分辨率影像作为数据基础,通过分类软件来进行绿地提取,可以大量减少人工劳动,极大提高工作效率。但是在目前,利用软件对高分辨率影像进行分类,要获得好的分类效果还比较困难,本篇文章所要计算的绿地覆盖率,对精度的要求并不高,同时,通过引进gis数据参与分类,提高了分类的精度,另外,在执行完分类的过程后,还可以通过人工的检查,手工修正一些不正确的分类结果,但这些劳动,相比较过去的作法,已经变得相当轻松。总之,采用高分辨率影像作为数据,利用影像分类软件作为绿地提取的工具,给绿地覆盖率的计算提供了便捷的方法,而随着影像数据获取的质量提高以及分类软件性能的不断完善,这样的方法将会显得愈发的简洁和优越。
(科教作文网http://zw.nseAc.com)
共2页: 2
论文出处(作者):