计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

黄河调水调沙(1)程力学毕业论文网(3)

2014-01-08 01:05
导读:四、人工塑造协调的水沙关系——调水调沙 按照黄河下游河道冲淤规律,只要把进入黄河下游河道的不平衡的水沙关系调节为相协调的水沙关系,完全可
四、人工塑造协调的水沙关系——调水调沙
按照黄河下游河道冲淤规律,只要把进入黄河下游河道的不平衡的水沙关系调节为相协调的水沙关系,完全可以使黄河下游河道实现不淤积。那么,如何才能对不平衡的水沙关系进行调节呢?关键的手段就是在下游河道之首建设具有足够库容的控制性水库,2001年底竣工的黄河小浪底水库具备对不平衡水沙关系进行调节的强大功能。
小浪底水库位于控制进入黄河下游河道水沙的关键部位,该水库控制了黄河径流量的91%,控制了近100%的黄河泥沙。水库总库容126.5亿m3,长期有效库容51亿m3。小浪底水库的调水调沙功能是长期可以发挥的。因为,在水库运用的初期,也就是蓄水拦沙期,水库有足够的调水调沙库容。30年后,拦沙库容淤满,水库转入正常运用期,在51亿m3的有效库容中,有10.5亿m3是作为调水调沙库容而设计的。
基于黄河下游河道的冲淤规律,小浪底水库的调水调沙运用一般采用以下两种方式:
一是控制出库含沙量、流量及其历时三要素。
对小浪底水库不同高程泄流设施(如排沙洞、明流洞等)进行组合,对水库出流要素进行控制,人工塑造一种适合于下游河道输沙特性的水沙关系,充分发挥使下游河道不淤积或冲刷条件下单位水体的输沙效能。
二是控制出库泥沙颗粒级配——“拦粗排细”。
既然颗粒直径小于0.025mm的细泥沙一般都能输送入海,将其蓄在水库中则没有任何好处。相反,若通过控制运用,只拦对下游危害严重的颗粒直径大于0.05mm的粗泥沙,则水库不仅可以延长拦沙运用时间,而且可以收到明显的减淤效果。
(一)黄河首次调水调沙试验水库运用方式的确定
小浪底水库的运用分为以下几个阶段:第一阶段是起调水位以下死库容蓄水拦沙淤积阶段。第二阶段是逐步抬高汛期运用水位拦沙阶段,即在起调水位以下死库容淤满后,逐步抬高汛期运用水位拦沙运用,坝前淤积面基本以平行抬高的形态逐步淤高至245m高程。第三阶段是高滩深槽拦沙运用阶段,即在坝前滩面淤高至245m以后,继续将滩面淤高至254m,丰水年份冲刷下切河槽并使之降至230m高程,使库区形成高滩深槽淤积形态。第四阶段是利用水库51亿m3长期有效库容中的10.5亿m3的槽库容进行多年调水调沙运行。 本文来自中国科教评价网
目前,小浪底水库刚投入运用不久,正处于死库容蓄水拦沙运用阶段,该阶段水库蓄水体较大,不易做到“拦粗排细”。因为,“拦粗排细”运用方式的核心是要求水库维持较小的蓄水体,水流进入蓄水体,基本呈明流输沙状态,提高排沙比,达到多拦粗沙少拦细沙的目的。因此,黄河首次调水调沙试验小浪底水库的运用采用控制出库含沙量、流量及其历时方式。
(二)沙量、流量及其历时三要素的确定
1.含沙量
当前正处于死库容蓄水拦沙运用阶段的小浪底水库,为充填起始运用水位以下的死库容,水库运用必然要经过一段相对清水下泄时期,在此期间,水库排沙方式以异重流排沙为主,不同水沙条件的平均排沙比为10%~20%,出库含沙量较低。因此,根据黄河下游河道冲淤变化的年平均含沙量临界阈值20~25kg/m3,确定本次试验的出库平均含沙量为小于20kg/m3。
2.流量
根据大量的实测统计资料分析,在水流含沙量小于20kg/m3的情况下,当花园口断面流量为800m3/s,黄河下游河道冲刷可发展到高村以上;当花园口断面流量为1700m3/s时,黄河下游河道冲刷可发展到艾山附近;当花园口断面流量为2600m3/s时,黄河下游河道可全部冲刷,此即黄河下游河道冲淤变化的临界流量;当花园口断面流量为3700m3/s时,黄河下游河道冲刷效率最高。
本次试验确定控制花园口断面流量2600m3/s(相应控制艾山断面2300m3/s,利津断面2000m3/s)。
理由如下:
(1)本次试验属首次调水调沙试验,试验的目的之一就是寻找黄河下游河道冲淤变化的临界流量,而大量的实测统计资料认为,2600m3/s即为下游河道冲淤变化的临界流量。

您可以访问中国科教评价网(www.NsEac.com)查看更多相关的文章。


(2)1986年以来,汛期进入黄河下游河道的主体流量小于3000m3/s,下游河道,特别是主河槽淤积严重,局部河段(如高村以上)平滩流量已降至3000m3/s左右。
(3)近一个时期,河道整治工程多是为了适应小水上提河势而续建的,黄河下游游荡性河道的河势尚未得到有效控制。物理模型试验结果表明,当控制花园口断面流量3700m3/s时,下游部分河段的河势发生了明显变化。同时,考虑到下游河道局部河段的整治工程,因其未受长时期中等以上洪水考验,根石可能会有走失现象,并由此造成重大险情,对防洪带来不利影响。
3.历时
从花园口断面至黄河入海口,每个断面都有一个冲淤变化的临界流量,若泄流历时太短,则会因下游河道的槽蓄作用而使行进流量衰减太快,以致于无法满足下一个河段的冲刷流量要求。
本次试验前的理论分析,在含沙量20kg/m3、泄放流量2600m3/s时,从小浪底水库至黄河入海口的临界时间是6d。
试验开始时确定的泄放2600m3/s流量的历时为不少于10天。
理由如下:
(1)理论上提出的6d历时,是在水流不漫滩的情况下计算出来的。由于近些年来黄河下游河道一直未有遇到过大洪水,长期的小流量下泄致使部分河段的主河槽淤积严重,局部河段的平滩流量已降至3000m3/s以下,下泄2600m3/s很有可能在局部河段出槽漫滩,若出现这样的情况,6d的临界历时就很难保证把人造洪峰携带的泥沙送至大海,部分河段还将发生严重淤积。
(2)试验开始时的小浪底水库蓄水位为236.42m,而汛限水位为225m,水库蓄水位超出汛限水位11.42m,超蓄水量14.6亿m3,且预报小浪底入库流量为1030m3/s。若按下泄2600m3/s历时6d考虑,试验结束时,小浪底水库蓄水位仍将超过汛限水位。若按历时10d考虑,试验结束时,小浪底水库水位为225.52m。试验采用历时不少于10d,即可以在试验结束时,小浪底水库水位降至汛限水位225m以下。 (科教作文网http://zw.ΝsΕAc.com发布)
(3)通过对1960年9月~1996年6月黄河下游发生的含沙量小于20kg/m3的110场洪水统计,历时共937d,平均每场洪水9.4d。其中,流量大于2500m3/s的洪水共发生了35场,历时342d,全下游河道发生冲刷21.58亿t,平均每场洪水冲刷0.62亿t。平均每场洪水的时间约为10d。
(三)小浪底水库库区及下游河道测验断面的布设
在小浪底水库库区共布设197个测验断面,其中布设淤积测验断面174个,库区水沙因子断面2个,坝前漏斗测验断面21个。在小浪底坝下至黄河入海口共布设297个测验断面,其中,下游河道布设淤积测验断面116个,滨海区地形测验断面81个。
(四)试验过程及结果
试验从2002年7月4日9时开始,小浪底水库蓄水位236.42m,蓄水量43.5亿m3。7月15日9时,小浪底水库放水结束,水位降至223.84m。试验下泄总水量26.1亿m3(其中水库补水15.9亿m3,汛限水位以上补水14.6亿m3)。试验过程中,小浪底水库入库沙量1.831亿t,出库沙量0.319亿t,水库淤积1.512亿t,排沙比17.4%,控制在设计排沙比10%~20%以内。
1.试验参数控制
花园口断面平均含沙量为13.3kg/m3,设计值为小于20kg/m3;
花园口断面平均流量为2649m3/s,设计值为2600m3/s;
小浪底水库泄流历时11d,设计值为不少于10d。
2.测验情况
(1)小浪底水库库区
河床采样157次;
实测坝前漏斗3次,累计长度90km;
实测一次完整的异重流过程,累计测量断面长度127km。
(2)下游河道 (科教作文网http://zw.ΝsΕac.cOM编辑)
流量测验310次;
水位测验11290次;
报汛2850次;
输沙率测验115次;
单沙1095次;
留取颗分沙样4700个;
过水断面测验383个;
河床质采样2000个。
(3)测验数据
本次试验,共取得测验数据520万组。
3.试验结果
(1)黄河下游河道共冲刷0.362亿t
以河段分,艾山以上冲刷0.137亿t。 其中,夹河滩以上冲刷0.202亿t,夹河滩-孙口河段淤积0.082亿t,孙口-艾山河段冲刷0.017亿t。艾山以下冲刷0.225亿t。以滩槽分,滩区(仅在白鹤-花园口,夹河滩-孙口河段)淤积0.200亿t,河槽(全下游河段)冲刷0.562亿t。
(2)主河槽冲刷平均深度
夹河滩以上0.16~0.18m,夹河滩-孙口0.24~0.26m,孙口-艾山0.07m,艾山以下0.12~0.16m。
(3)主河槽增加过流能力
夹河滩以上240~300m3/s,夹河滩-孙口300~500m3/s,孙口-艾山90m3/s,艾山-利津80~90m3/s,利津以下200m3/s。
(4)对河道整治工程的适应性检验
白鹤-京广铁桥河段,河势总体上向好的方向发展;京广铁桥-东坝头河段,明显地暴露出由于河道整治工程不配套,河势变化虽然较小,但流路很不规顺,长期以来小水形成的不利河势没有改变;东坝头以下河段,河势比较规顺,流路比较稳定。
(5)对各河段河槽平滩流量的检验
近几年,由于来水严重偏枯,小浪底水库只下泄满足下游工农业用水要求的小流量过程,致使下游河道的主河槽淤积萎缩,平滩流量大幅度减小。但具体到某一河段的主槽平滩流量到底是多少,却不好估计出来。本次试验用花园口断面平均流量2600m3/s下泄11d,在夹河滩-孙口河段表现出明显的高水位(如苏泗庄断面的水位甚至超过了“96?8”洪水6810m3/s的水位0.28m),并出现漫滩情况,实际检验高村上下河段二级悬河形势加剧,平滩流量已降至2000m3/s左右。
内容来自www.nseac.com

(6)对洪水演进时间的检验
本次试验,自小浪底水库下泄最大流量3480m3/s(7月4日10:54)至黄河入海口出现最大流量2450m3/s(7月19日10:00),历时15d,较一般情况下洪峰演进历时加长了约1倍。特别是夹河滩-高村河段,一般情况下,该河段1800m3/s流量演进时间为30h,而本次试验中2500m3/s流量的演进时间却长达82h。高村-孙口河段,一般情况下,1700m3/s流量的演进时间为31h,而本次试验中2300m3/s流量的演进时间却长达118h。究其原因,一方面是洪水漫滩,另一方面说明长时间小流量下泄后,嫩滩已被垦殖,由此增大了河道糙率。
(7)对数学模型和实体模型参数进行率定
目前已投入运行的数学模型和实体模型均是在过去统计资料的基础上建设起来的,通过本次试验中对数学模型和实体模型的同步操作,发现模拟的结果与原型试验有许多不相符的方面,说明完全有必要而且也有条件利用本次原型试验所取得的宝贵资料对数学模型和实体模型的参数进行率定,以便进一步提高模型对原型的模拟精度。
总之,黄河首次调水调沙试验达到了预期的目的。本次试验所取得的结果不仅仅反映在黄河下游河道0.362亿t的冲刷量上,更为重要的是,通过本次试验,积累了对黄河测验的海量数据(520万组),加深了我们对黄河河床演变及水沙规律的认识,为今后建立更加符合原型黄河实际的数学模型和实体模型提供了极其重要的物理参数。同时,也让我们进一步认识到黄河治理的复杂性和艰巨性。
试验证明,利用水库调水调沙,将不协调的水沙关系调节为相协调的水沙关系,是有利于输沙入海、减轻下游河道淤积甚至冲刷下游河道的有效途径之一。今后,还应该积极创造条件,继续进行调水调沙试验。当然,试验的参数、小浪底水库的运用方式等试验条件,都将会有所变化。

共3页: 3

论文出处(作者):
上一篇:上游梯级水库存在安全隐患时对城市防洪影响的 下一篇:没有了