有关大坝安全监测的内涵及扩展研究(1)程力学(2)
2014-04-06 01:03
导读:3.3监测手段和方法 大坝安全监测包括巡视检查和仪器监测[4],笔者认为巡视检查和仪器监测是分不开的。前者也要尽可能的利用当今的先进仪器和技术
3.3监测手段和方法
大坝安全监测包括巡视检查和仪器监测[4],笔者认为巡视检查和仪器监测是分不开的。前者也要尽可能的利用当今的先进仪器和技术对大坝特别是隐患进行检查,以便作到早发现早处理,如土石坝的洞穴、暗缝、软弱夹层等很难通过简单的人工检查发现,因此,必须借用高密度电阻率法、中间梯度法、瞬态面波法等进行检查[6],从而完成对其定位及严重程度的判定。人工巡查和仪器监测分不开的另一条原因是由于大坝的特殊性和目前仪器监测的水平所决定的。大坝边界条件和工作环境较为复杂,同时,由于材料的非线性(特别是土石坝),从而使监测的难度增大;另一方面,目前仪器监测还只能作到“点(小范围)监测”,如测缝计只能发现通过测点的裂(接)缝开度的变化,而不能发现测点以外裂(接)缝开度的变化;变形(渗流)测点监测到的是坝体(基)综合反应,因而难以进行具体情况的原因分析。正是由于上述原因,监测手段和方法必须多样化,即将各种监测手段和方法[4][5]结合起来,将定性和定量监测结合起来,如将传统的变形、渗流、应力应变及温度监测同面波法、彩色电视、超声波、CT、水质分析等结合起来。随着科技水平的发展,一种真正的“分布式测量系统”——光纤测量系统即将面世,水科院、国电公司成都院等单位已对此作了大量的研究,也曾在三峡作过试验。该系统将光纤既作为传感部件,又作为信号传输部件埋设于坝体中,使每一根光纤成为大坝的神经,感受大坝性态的变化并具体定位,从而使监测走向立体和全方位。
目前,自动化系统还存在费用高、可靠性难以保证、监测项目不全、安装调试困难、实时化程度低等问题,笔者认为一种费用低、安装调试简单、易维护、可以进行大范围监测、实时性高的系统才是发展方向。同时,监测方法、监测量的变化(如由标量到矢量、由数值分析到图象分析)必将导致分析方法的变化。
(科教范文网http://fw.ΝsΕΑc.com编辑)
3.4大坝安全监测的网络化、智能化、效益化
在过去的许多年中,人们总是将观测资料交由专职单位去分析,这样做要花费大量的时间,不利于及时有效地掌握大坝性态和进行最优的运行调度。同时,一般单位的资料分析总是在建立
数学模型(特别是统计模型)的基础上,缺乏与具体大坝的联系及与设计标准(稳定、强度)的比较,也不利于监测技术的提高。近期,一些单位在专家系统、人工智能及决策支持系统开发中,直接将监测资料(如库水位、温度、应力、扬压力等)与设计标准(稳定、强度)对照起来用于坝体强度及稳定校核是一种很好的思路。但是,目前的大坝安全监测自动化水平多数还停留在部分监测项目数据的自动采集上,难以满足实际需要。事实上单凭监控指标来判别大坝安全是不完善的,因为目前的监控指标主要依靠经验和理论计算确定。前者人为因素大,后者由于计算理论、数学模型和边界条件的假定,误差也较大,实际应用也值得商榷。如对于土石坝,当上游库水位骤降时测压管水位不会超过监控指标,但此时上游坝体有可能失稳。我国自1987年开始的水电站大坝安全定期检查(鉴定),是对大坝结构性态和安全状况的全面检查和评价,已得到广大科技人员认可,实践证明是有效的。它就是根据设计复核、坝基隐患、坝体稳定、泄洪消能、库区淤积及近坝库岸滑坡等方面对大坝安全进行评价。因此,大坝安全评估软件应与大坝安全定检内容相适应,应用专家系统和决策支持系统将大坝安全定检的成功经验和监测资料分析的有效方法结合起来,在此基础上实现与大坝监测数据采集系统、闸门监控系统、水库自动调度系统、水雨情测报系统的有机结合,将大坝安全作为约束条件,效益的最大化作为目标函数才能适应用户和时代的需要。
(科教作文网http://zw.NSEaC.com编辑发布) 最近,国家防总在建立全国防汛决策支持系统中将大坝安全监测(工情监测)作为整个系统的一个部分,从而突出水库运行以效益为中心,大坝安全是约束条件的观点。另一方面,在大坝失事或事故中,洪水漫顶占了相当大的比例。试想:如果大坝某些性态异常或闸门起闭机损坏,而又不知近期洪水情况,如何在洪水到来时确保大坝安全?同时,运行也会影响大坝安全,如陈村大坝105 m高程裂缝的出现及发展与不正确的运行方式有关;碧口大坝1995年也因泥沙淤积在较短的时间内将排沙洞口淤堵,威胁了电站安全。故为充分发挥水库
效益,确保大坝安全,必须尽可能将流域水情、梯级水库调度情况及洪水预报、大坝安全监测和本水库运行调度结合起来。
另一方面,目前自动监测系统的数据采集软件均有巡测和选测功能,为适应“无人值班,少人值守”的要求,设置自动进行巡测、在线诊断、自动报警是对系统的必然要求。由于许多测值超差均由于自动化系统本身引起,故笔者建议在数据采集软件中应增如下功能:即当某测值或其变化速率超过正常范围时,系统应立即对该测点进行多次重复测量或自动加密测次,以方便系统维护和资料分析。
随着信息化的推广,大坝安全监测应主动适应时代要求,走向网络化、智能化,采用网络数据库、INTERNET/INTRANET技术,建立全国的大坝安全监测信息网是时代的要求。
4结语
通过以上分析可知,大坝安全监测实际上是一种管理,包括信息采集、处理、结论的得出、措施的制定、信息的反馈,其根本目的是为了工程效益。综合起来可以得出如下几点:
(1)大坝安全监测范围空间上应包括梯级水库;时间上应从设计开始。大坝安全监测内容应包括与大坝安全有关的泄洪及机电设备;
(转载自中国科教评价网http://www.nseac.com) (2)大坝安全监测应与气象、水情、洪水预报及水库调度结合起来,使之成为水库运行调度决策支持系统的一部分,真正为工程效益的最大化服务;
(3)大坝安全监测应将大坝安全评估与设计标准、设计参数(如安全系数,可靠度指标)等指标结合起来,充分利用大坝安全定检的成功经验和方法,从而易于理解、掌握和应用;
(4)大坝安全监测应充分利用科技进步,走向即时化、智能化、网络化。
总之,大坝安全监测就是利用一切手段,确保大坝以较少的投入来保证长期、稳定、安全的运行,实现效益的最大化。
参考文献
[1]赵志仁.大坝安全监测的原理与应用[M]碧旖颍禾旖蚩蒲Ъ际醭霭嫔纾1992豹
[2]邢林声.纪村混凝土坝基红层的恶化及其原因分析[J].水利学报,1996,(9).
[3]邢林声,方榴声.陈村拱坝下游坝面105 m高程附近水平裂缝的性态分析[J].水力发电学报,1988,(4).
[4]SDJ33689,混凝土大坝安全监测技术规范[S].
[5]SL6094.土石坝安全监测技术规范[S].
[6]谢向文.黄河下游堤防隐患探测技术研究[J].水利技术监督,2000,(4):20-24.
[7]王黎.荆江分洪区南闸混凝土建筑物质量检测分析[J].水利技术监督,2000,(4):24-27.
共2页: 2
论文出处(作者):佚名