论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
在解决实时感知类的问题中,模拟神经芯片扮演着主要的角色。因为这些问题不要求精确的数学计算,而主要是对大量的信息流进行集合和并行处理,这方面低精度的模拟技术从硅片面积、速度和功耗来看具有相当大的优势。但是模拟芯片的抗干扰性差,设计中需要考虑对环境因素变化引起的误差进行补偿,非常麻烦;它的另一个缺点是,制造一个突触必须考虑权值存储的复杂性,同时要求放大器在很宽的范围内呈现线性[5],[6]。
(2)用数字技术实现硬件神经网络
用高低电平来表示不同状态的数字电路是信息工业中最常用的技术。数字神经芯片有非常成熟的生产工艺,它的权值一般存储在RAM或EPROM等数字存储器中,由乘法器和加法器实现神经元并行计算。对设计者来说,数字神经芯片可以以很高的计算精度(达到32位或者更高)实现神经元核函数。另外,用数字技术实现神经网络时,通常可以采用标准单元库或可编程门阵列直接进行电路设计,这样可以大大减少设计时间[5],[6]。
数字神经芯片不仅具有容错性好、易于硬件实现及高精度、高速度的优点。更重要的是有很多数字电路CAD的软件可以作为设计工具使用。但要实现乘/加运算,需要大量的运算单元和存储单元。因而对芯睡面积和功耗要求很高。为了适应大面积的数字电路的要求,现在很多数字神经芯片都采用了硅片集成技术(Wafer-Scale Integration)。
(3)用数模混合技术实现硬件神经网络
出于上述种种考虑,许多研究人员提出并采用了各种数模混合神经芯片,具有数字及模拟工艺各息的优点而避免各自的缺点,运算速率高,芯片面积小,抗噪声能力强且易于设计。典型的数模混合信号处理部分则全是模拟的。这种结构很容易与其它的数字系统接口以完成模块化设计。近年来在各种数模混合神经芯片设计中,利用脉冲技术的数模混合神经芯片和利用光互连技术的光电混合神经网络芯片得到了广泛的关系,它们代表神经网络未来发展的方向。
尽管数模混合神经芯片有种种优点,但它也存在着一些不足。比如,对于大多数数模混合神经芯片来说,训练学习算法的实现往往需要一个附加的协处理器,这无疑会增加整个神经网络系统的成本和复杂性[5],[6]。
2 RBF网络原理和它的硬件实现
RBF网络是一种有导师的三层前馈网络。它最重要的特点是中间隐层神经元的基函数只对输入剩激起局部反应,即只有当输入落在输入空间的 一个局部区域时,基函数才产生一个重要的非零响应;而在其它情况下基函数输出很小(可近似为零)。网络结构如图1所示。 内容来自www.nseac.com