倒置A2/O工艺的原理与特点研究(1)(2)
2014-04-04 01:10
导读:柱1作挂膜运行,hrt=20~30 h,温度为24~29℃。为了单独考察城市污水在短时厌氧环境污水中vfa的变化,试验未引入小试系统活性污泥。柱内微生物完全为

柱1作挂膜运行,hrt=20~30 h,温度为24~29℃。为了单独考察城市污水在短时厌氧环境污水中vfa的变化,试验未引入小试系统活性污泥。柱内微生物完全为厌氧环境下由污水自然接种生长起来的厌氧或兼性细菌,显然其厌氧程度较一般脱氮除磷系统的厌氧区更为充分。柱2作为对比,未作任何处理。正式试验时,将两柱瞬时放空,注入新鲜污水,然后启动电机,每隔2h取样,分析污水中vfa随时间的变化规律,结果见图2。

图2表明,在本试验条件下,短时厌氧环境并不能增加污水中vfa的量,在厌氧区放置填料则会加剧该区vfa的消耗。
根据厌氧消化理论,污水中的大分子有机物转化为vfa需要经历水解和产酸(产氢)两个过程。尽管早期的研究曾认为在此过程中兼性细菌属于优势种群,但关于生活污水污泥消化的研究指出,事实正好相反,专性厌氧细菌较兼性细菌多100倍以上。从总体上说,最重要的水解反应和发酵反应都是通过专性厌氧细菌进行的,同时由于专性厌氧细菌的生化效率很低,上述过程需要较长的水力停留时间。andrews和pearson(1965)曾利用溶解性有机和无机合成污水对厌氧发酵过程的vfa产生动
力学规律进行了研究,结果表明,当 hrt =2.5 d时反应器的vfa浓度最高。
本试验所采用的 hrt =2~3 h(这与生物除磷工艺厌氧区的hrt相近),污水 cod 仅500mg/l左右。在这样的条件下,柱内实际上很难造就类似污泥消化那样的厌氧环境并培养出大量的专性厌氧菌,生物膜上的微生物主体仍为消耗vfa的兼性细菌,故而柱1的vfa数量不仅没有增加,反而消耗很快。柱2完全为污水,其微生物数量较少,所以其vfa在很长一段时间内基本上保持恒定。只是在一定时间以后,随着微生物的增殖,vfa才出现明显下降。本试验说明,就一般城市污水而言,短时厌氧区不会增加污水中vfa的量。
内容来自www.nseac.com
② 将柱1、柱2放空,从小试系统好氧区末端取3 l混合液,与3 l污水混合后一分为二地分别装入柱1、柱2,然后启动电机;两柱厌氧运行2~3 h后取出填料和搅拌桨,并同时转入曝气状态每隔30 h取样分析比较两柱释磷、吸磷特点,结果见图3。

图3(a~d)是在不同时间利用实际污水进行的四组重复性试验。由于实际污水水质的变化,图3污水中的vfa浓度是依次下降的。图3(a、c)的厌氧历时为3 h,图3(b、d)的厌氧历时为2 h。
该四组图表明:①在厌氧条件下进水vfa越高,柱1、柱2的释磷量越大,这与以往的认识是一致的。②柱1存在兼性生物膜,致使其厌氧环境较柱2更为充分。当vfa较多时,低orp水平促使柱1聚磷菌以更快的速率吸收vfa合成phb,同时释放出磷酸盐。由图可见,柱1初期释磷速率均明显大于柱2。图3(d)进水vfa最低,柱1释磷曲线一直在柱2的上方,直至厌氧段结束,柱2释磷曲线才与柱1交合。但是柱1兼性生物膜同时消耗vfa,当反应器中vfa不足时,兼性生物膜与聚磷菌对vfa的竞争就表面化了,并使柱1释磷速率迅速衰减。柱2基本上不存在这种竞争关系,故聚磷菌能长时间保持较高的释磷速率并最终在释磷总量上超过柱1。除图3(d)外,投加填料的柱1释磷总量均比柱2小,而且进水vfa越高其差别越明显,见图3(a、b)。 ③在后续好氧条件下,柱1聚磷菌过度吸磷能力明显高于柱2,当厌氧历时由3 h降为2 h时上述差别明显增大,见图3(b、d)。该现象是值得特别关注的,它表明聚磷菌厌氧有效释磷水平的充分与否,并不是决定其好氧过度吸磷能力的充分必要条件。这与目前流行的关于聚磷菌厌氧有效释磷越高,其过度吸磷能力越强的认识基本上是矛盾的。从上述现象分析推动聚磷菌好氧过度吸磷的更本质动力,可以得出的判断是,在一定范围内,聚磷菌在厌氧环境中的历时越长,环境的orp越低,促进好氧吸磷的动力越大。而就系统的除磷效果而言,释磷可能属于一种不具备充分必要性的表面现象。好氧吸磷的能量既可以来自胞内贮存的碳源(如phb),也可以从其他方面获得。这种差别当厌氧历时由3 h减为2h时变得尤其明显,表明厌氧环境对于微生物过度吸磷的极端重要性。