量子信息科学在中国科学技术大学的兴起和发展(2)
2015-02-27 01:06
导读:2.3提出能有效抑制腔损耗影响的腔量子电动 力学 (QED)量子处理器新方案[7] 腔QED是种理想的量子处理器,但腔的损耗引起量子信息的泄漏阻碍其实际
2.3提出能有效抑制腔损耗影响的腔量子电动
力学(QED)量子处理器新方案[7]
腔QED是种理想的量子处理器,但腔的损耗引起量子信息的泄漏阻碍其实际运行,为此要求腔的Q值要很高,现有的技术难以达到.我们提出一种能抑制腔损耗影响的新方案,并证明现有技术可以实现.法国巴黎高师的著名学者、法兰西院士Haroche研究组很快在实验上证实这个方案的正确性[8].我们的论文成为该研究方向后续工作必引用原始的论文,迄今已被SCI他引260余次.
2003年上述成果以“量子信息技术的基础研究”为题目荣获了国家自然科学二等奖.
3量子密码
3.1实现从北京到天津125km商用光纤的量子密钥分配[9]
量子密码是量子信息领域中最可能得到实际应用的技术.美国人将“量子加密”称为“改变人类未来”的新技术.量子密码原理已在实验室内演示成功.目前国际学术界正在研究走向实用进程中的关键科学和技术问题.光纤量子密钥分配研究中最关键的问题是:现在广泛研制的不等臂MZ干涉仪虽然安全但稳定性很差,无法在商用光纤上运行,而改进后的返回式
光学系统虽然解决了稳定性问题,但其安全性却出现了漏洞.我们解决了这个稳定性和安全性统一的难题.在实验上研究了光纤系统不稳定性的物理根源,在理论上给出稳定性条件,进而设计出满足稳定性条件的迈克逊-法拉第干涉仪,在实验室内实现150km的量子密钥分配,在北京与天津之间的125km商用光纤上实现了量子密钥分配和加密图像传送.这是迄今国际上报道的最远距离实用光纤量子密钥分配.
3.2 局域量子保密通信网在北京测试成功
(转载自http://zw.NSEAC.com科教作文网)
我们利用自己发明的量子网络路由器和单向传输、抗干扰的F-M量子密钥分配系统,于2007年3月份在北京完成了国际上第一个多(4个)节点、无中转、可同时、任意互通的量子保密通信网的测试性运行,取得了很好的通信效果.这次测试是在中国网通公司的商用通信光纤线路上实现的,节点间距离分别为43,32,40,32km,对应的误码率码率分别为7.7%,4.1%,6.6%,2.4%.测试显示,系统在没有人为干预的条件下,可以长期稳定运行.
3.3无共享参考系的量子通信的实验实现[10]
在1km的光纤中,利用偏振和时间两个模式均有纠缠的光子对实验,实现了BB84量子密钥传输的一种更抗干扰的改良方案.该量子密码不受光纤扭曲、旋转或者光纤本身缺陷的影响,通信双方也不需要精确的同步时间,从而大大降低了通信的复杂度.无论外部环境如何变化,光纤通信双方总有办法取得需要的密码.此外,我们还给出了量子通信方案的绝对安全的理论论证,避免了现有光纤量子通信的安全性隐患.《Phys.Rev.Lett.》审稿人认为,该成果是“非常出色的”,“具有特殊的价值”.
4量子纠缠源的制备和操控
量子纠缠是量子信息领域中最重要的资源.当两个或多个粒子处于纠缠态时,对其中的一个粒子进行操作,其他的纠缠粒子不管位于何处,其量子态会立即发生相应的变化.因此,彼此纠缠的粒子之间便由这种基于量子非局域性的内禀通道构成一个量子网络,它可以实现量子通信(即传送量子信息),也可以实施分布式的量子计算.自从量子信息作为新兴学科诞生以来,量子纠缠便成为国际学术界研究的焦点.我校研制成功高亮度的光子纠缠源:连续纠缠光子源,每秒12.8对,对比度为95%;脉冲纠缠光子源,每秒1.4万对,对比度87%,在国际上处于领先水平.オ
(科教作文网http://zw.ΝsΕac.cOM编辑)
4.1量子信息传输的奇特现象
两个纠缠的光子构成一条量子通道,通过对各个光子的操作,可实现许多新奇的信息传输功能.1997年,在实验上实现了所谓“量子隐形传态”,即将未知量子信息传送到远处的纠缠光子上而原先携带该量子信息的物理载体却留在原处不被传送.我们进一步研究了量子信息传输的许多有趣现象:(1)在实验上实现了单光子量子态的远程操纵,即局域地操作其中一个纠缠光子,可将远处的另一个纠缠光子制备在任意态上[11];(2)局域地对一个纠缠光子实施任意相位旋转操作,可将这个操作传送到远处,旋加在另一个光子态上[12];(3)在实验上演示了当纠缠通道被损坏时,可通过单光子局域操作来实现纠缠纯化,而不必通过非局域的操作[13].