固态阴极射线发光的表征(1)(2)
2015-03-13 01:15
导读:在固态阴极射线发光器件中,我们已经分别从有机聚合物、小分子有机发光材料、有机磷光材料、稀土配合物上发现了它们的固态阴极射线发光,这证明了
在固态阴极射线发光器件中,我们已经分别从有机聚合物、小分子有机发光材料、有机磷光材料、稀土配合物上发现了它们的固态阴极射线发光,这证明了固态阴极射线发光的普适性.同时,用不同材料作为电子加速层时,在同种发光材料上也得到了同样的结果.本文着重分析了固态阴极射线发光的光谱特征、其中的物理现象、它的波形特点以及两个发光峰的衰减差异.
1 固态阴极射线发光(SSCL)的光谱特征お
1.1 有机小分子的固态阴极射线发光光谱
我们最先是在ITO/SiO2/Alq3/SiO2/Al结构的器件中发现了类阴极射线发光[3,4].如图1所示,在以小分子材料Alq3作为发光层,以SiO2层作为电子加速层的夹层结构中,在交流电驱动下,当驱动电压比较低时,得到了517nm处的Alq3激子发光;而当驱动电压比较高时,除了有激子发光外,还得到了蓝色(457nm)的发光,此发光对应于Alq3的LUMO能级到HOMO能级的直接辐射跃迁.在夹层结构中,二氧化硅是n型半导体,几乎不能传输空穴,器件中不会存在电极注入的空穴,并且Alq3的迁移率不高,在有机层Alq3内,积聚不出可以经碰撞引起发光的电子能量,所以蓝色的发光不是场致发光,其发光来源与传统的有机器件的注入发光不同,而应该是类阴极射线发光.这时电极注入的电子、电极/二氧化硅界面处的束缚态电子以及缺陷上的电子等在电场的作用下被释出并被加速,成为过热电子后直接碰撞Alq3分子,实现发光.当SiO2中电子的加速使电子能量变得足够高时,可以激发Alq3,把HOMO中的电子直接激发到导带中,但由于电子和声子相互作用很强,电子能量消耗,电子一般同Alq3内的空穴形成激子,在比较高的电场下,激子有可能被解离,而出现Alq3的带带间复合,即HOMO上的空穴与LUMO上的电子之间的复合发光,这个能量与457nm处的发光峰吻合.随着器件的驱动电压的提高,发光峰由517nm逐渐向457nm移动(图1),这说明随着电压的增加,电子在二氧化硅层中可以获得更高的能量,激发增强,随着电场的增强,在Alq3层中的激子解离变强,进入LUMO中的电子增多,使得蓝光逐渐增强.
(科教论文网 lw.NsEac.com编辑整理)
1.2 有机聚合物的固态阴极射线发光光谱
在同样结构的器件中,当发光材料为有机聚合物MEH-PPV和C9-PPV时,我们也探测到了固态阴极射线发光.图2为电子加速层是SiO2、发光层是MEH-PPV的固态阴极射线发光[5].其中位于580 nm的长波长发光是对应着MEH-PPV的激子复合发光,而位于405 nm处的短波长发光对应于MEH-PPV的带带复合.此外,还出现了一新的发射,其波长位于500 nm处.当电子加速层为Si3N4时,我们也得到了相同的结果.
在这种器件中,在相同频率和不同电压的交流激发下,MEH-PPV的发光随驱动电压的不同而变化,如图3所示[2,5].当驱动电压较低时,只出现了MEH-PPV在580nm处的激子发射,并且它的发光强度随着驱动电压的上升而增强.当驱动电压超过一定值时,580nm的强度下降直至完全消失,同时,出现了短波长405nm的发射,其发光强度随着驱动电压的增大先增大,然后降低,而后继续增大,同时还出现了另一个波峰位于500nm的发射,并且其发光强度随着驱动电压的增大一直增强.
在以SiO2 为加速层的器件中,过热电子的能量可以达到10—100eV以上[6],这些高能量的过热电子碰撞激发有机发光层,导致有机发光材料的发光,这不同于传统有机材料的注入发光.当驱动电压较低时,在较低的电场作用下,碰撞激发出的电子和空穴通过库仑相互作用形成Frenkel激子而发光,这种情况和有机材料的光致发光相似.在一定的电压范围内,随着驱动电压的增大,过热电子的能量增大和数目增多,使得有机材料碰撞激发后形成激子的速率增大和数目增多,因此激子的发光增强.但随着驱动电压的继续增大,导致有机材料上的场强增强,使得碰撞激发后形成的激子发生离化,这时候,激子复合的速率小于激子离化的速率,因此长波长发光减弱.电子被离化到LUMO能级,由于在聚合物材料中电子的迁移率比较小,因此在电场的作用下,电子向电极方向的迁移较慢,另外,SiO2的导带与MEH-PPV的LUMO之间势垒较大,电子很难从电极漏出,因此离化后的电子被限制在有机层中,极容易同HOMO能级的空穴发生复合,实现带带复合,产生短波长405nm的扩展态发光.另一方面,随着驱动电压的增大,过热电子的能量也随之增加,过热电子可以直接碰撞激发有机材料,实现短波长的发光,因此造成了短波长发光强度随驱动电压的上升而迅速增强.但随着驱动电压的进一步增强,短波长的发光强度反而下降,出现了峰值位于500nm处的发射,我们认为,这来源于电荷转移激子的发光.电荷转移激子也是中性的,移动时将正负电荷两个部分结合在不同的有机分子上运动,除了运动外,电荷转移激子还可以被俘获,大部分电荷转移激子是在电子-空穴复合过程中产生的,而500nm的发光正是在405nm的发光过程中产生的,405nm恰好是电子-空穴的直接复合发光.因此随着电荷转移激子的出现,激子离化而产生的直接电子-空穴的复合减少.随着电压的继续增大,405nm和500nm的发光都在增强,这是因为随着电场的增大,激子的离化进一步增强,并且过热电子的直接碰撞激发的几率也随之增强.オ