波利亚的解题训练与“题海战术”的辨析(1)(2)
2015-03-20 01:22
导读:オ 过去,国内外有关学习数学的著作和习题集基本上偏重于解决个别类型的问题,例如算术问题、几何问题、代数问题等,但很少涉及解题的一般方法.
オ
过去,国内外有关学习数学的著作和习题集基本上偏重于解决个别类型的问题,例如算术问题、几何问题、代数问题等,但很少涉及解题的一般方法.然而,“学生熟悉了解答个别类型问题的特殊方法之后,有可能只限于掌握一种千篇一律的死板方法而并不具备独立解决新问题的本领.”波利亚的《怎样解题》就弥补了这一空白,这本书给出了求解数学问题的一般方法.今天人们公认,在数学解题研究方面,波利亚是一面旗帜,他做出了划时代的贡献.
オ
“怎样解题表”中的指导性意见,具有普适性.不仅适用于“不太能独立工作”的人,而且适用于那些能独立解题的人;不仅适用于数学学科,而且可适用于其他学科.例如,未知数是什么?已知数是什么?条件是什么?这些问题都是普遍适用的,对于所有各类问题(代数的或几何的,数学的或非数学的,理论的或实际的),我们提出这些问题都会取得良好效果.波利亚解题训练的方式是引导学生按照“表”中的问题和建议思考问题,探索解题途径.试图引导学生逐步掌握解题过程的一般规律.这与“题海战术”的“题型+解法”的训练方式是绝然不同的.
オ
波利亚高度重视解题过程中的合情推理.数学中的合情推理是多种多样的,而归纳和类比是两种用途最广的特殊合情推理,拉普拉斯曾说过:“甚至在数学里,发现真理的工具也是归纳与类比.”因而波利亚对这两种合情推理给予了特别重视,并注意到更广泛的合情推理;他不仅讨论了合情推理的特征、作用、范例、模式,还指出了其中的教学意义和教学方法.
オ
波利亚反复呼吁:只要我们能承认数学创造过程中需要合情推量、需要猜想的话,数学教学中就必须有教猜想的地位,必须为发明做准备,或至少给一点发明的尝试.对于一个想以数学作为终身职业的学生来说,为了在数学上取得真正的成就,就得掌握合情推理;对于一般学生来说,他也必须学习和体验合情推理,这是他未来生活的需要.
(科教范文网http://fw.ΝsΕΑc.com编辑)
オ
怎样教猜想?怎样教合情推理?没有十拿九稳的教学方法.波利亚说,教学中最重要的就是选取一些典型教学结论的创造过程,分析其发现动机和合情推理,然后再让学生模仿范例去独立实践,在实践中发展合情推理能力.波利亚欣赏苏格拉底的名言:“思想应当诞生在学生的心里,教师仅仅应当像助产士那样办事.”他指出,教师要选择典型的问题,创设情境,让学生饶有兴趣地、自觉地去试验、观察,得到猜想.
オ
“学生自己提出了猜想,也就会有追求证明的渴望,因而此时的数学教学最富有吸引力,切莫错过时机”.波利亚指出,要充分发挥班级教学的优势,鼓励学生之间互相讨论和启发,教师只有在学生受阻的时候才给些方向性的揭示,不能硬把他们赶上事先预备好的道路,这样学生才能体验到猜想、发现的乐趣,才能真正掌握合情推理,提高思考问题、解决问题的能力.
オ
这种训练方式与“题型+解法”的做法也是完全不同的.共2页: 1 [2] 下一页 论文出处(作者):
“问题解决”和中学数学课程
试谈解题思路的发现与范畴间的辩证关系