计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

用CPLD实现嵌入式平台上的实时图像增强(2)

2015-06-07 01:40
导读:其中,P′i,j表示Pi,j修正后的值。显然,图像{Pi,j|i=1,2,...,n;j=1,2,...,m}按此规则修正后边缘值的变化更为强烈,边缘更为突出,可达到边缘增强的效

其中,P′i,j表示Pi,j修正后的值。显然,图像{Pi,j|i=1,2,...,n;j=1,2,...,m}按此规则修正后边缘值的变化更为强烈,边缘更为突出,可达到边缘增强的效果。同时,由于在原图像上叠加了梯度值,使得修正后的图像的频谱有一定的扩展。但由于没有对Pi,j的取值作约束,这样处理后的象素值可能会溢出,例如对于每个色彩通道为8位的图像,处理后的数值可能会大于255或小于0。因此,通常要对其进行归一化处理,即:

Pnew=255×(P′-P′min)/(P′max-P′min)。

但用硬件实现乘除运算可能会占用很多资源,上述公式即便以运算实现都是很不经济的。本文采用预拉伸加饱和/截止的方法,在不牺牲频率特性的基础上达到减少计算量的目的。

考察ΔPi,j与Pi,j的直方图,分别取得它们的右峰值所对应的横座标,记为GΔ和G,并找到k,使得kGΔ+G=255,则修正公式变为P′i,j=Pi,j kΔPi,j。其中kΔPi,j可以LUT实现。修正后的P′i,j可在[0,255]上进行饱和/截止运算。

2 用CPLD实现实时的图像增强

本文所采用的改进图像增强算法的主要成份是差分、累加以及饱和/截止。这些运算都是加减法及逻辑运算,都属于ALU的简单操作,适合硬件实现。本文采用CPLD实现所提出的算法。以对具有30fps的1280×1024 RGB图像计算ΔPi,j为例,每计算一点ΔPi,j需要4次加(减)运算,即总的需要1280×1024×3×30×4=471,895,200次加(减)运算。如果采用的DSP的速度是100MHz,且假定所有运算都是单周期的,则仅仅该运算就需要4.7s!所以采用CPLD实现某些运算是必需的。

图3 图像增强算法的硬件实现结构 (科教论文网 lw.nSeAc.com编辑发布)

上一篇:基于PCI总线的嵌入式实时DSP图像采集系统 下一篇:没有了