谈谈瓶组自然气化集中供气的供气能力-(2)
2015-08-04 01:09
导读:2.组分 液化石油气为烃类的混合物,成分以丙烷、丁烷为主,组分比例由4:1~1:2不等。由于这样大的变化,计算时只能根据当地所供应液化石油气的组
2.组分 液化石油气为烃类的混合物,成分以丙烷、丁烷为主,组分比例由4:1~1:2不等。由于这样大的变化,计算时只能根据当地所供应液化石油气的组分取近似值,这就给计算结果带来一定的偏差。而在气化过程中,沸点低、蒸汽压高的组分气化能力大,因此,在气液量不断减少的同时其组分也随着气化过程发生变化。也就是说,随着液量的减少,丙烷的比例越来越小,丁烷的比例越来越大,气化能力也就越来越小。同时液化石油气的比热、气化浴热、沸点、密度热恒等性质也起较大的变化。由这种变化对气化能力计算结果的影响是绝不能忽视的。而剩液量中的组分及其性质在设计中的变化是很难确定的。
3.环境温度、设计压力和最低液温设计的环境温度在理论上应当是30—50年本地区的历史最低温度。但是,瓶组自然气化只是作为过渡气源的方式,没有必要按此框框来设定,而应当根据本地区的气温情况和供气情况,适当调整。
设计压力就是气化的最低压力。正在气化中的液温随压力变化,压力越低,液温也越低,温差就会增大。从式(4)中可看出传热气化量与温差成正比的。我们认为,设计的最低压力就是调压器的进口压力Ps,一级调压系统0.17mPa(绝),二级调压系统为0.20mPa。
最低液温就是液化石油气达到最低设计压力时的液体温度。此温度虽然可以根据相平衡的图表来计算(如《燃气输配》、《燃气规划》中的相关图表),但由于最低压力过小,计算所得到结果往往在一个较大的范围。加上液化石油气组分的偏差,剩液量中组分及性质的变化,常常会导致与实际情况不相符的结论。
4.总传热系数在众多影响气化能力的因素中,最难确定的便是总传热系数。
钢瓶自然气化的传热过程主要包括液化石油气自身沸腾的对流换热,液化石油气与钢瓶内壁换热,通过壁厚、漆层的导热,外壁面与空气的传热等。因此总传系数与环境温度、液化石油组分、沸点、热容、比热、导出气量,与钢瓶的壁厚、漆厚及环境气温、空气流动情况等等因素有较大关系。由于这些因素的多变性,要从理论上用传热学原理计算出总传热系数确是很艰难的。
(科教作文网http://zw.ΝsΕac.cOM编辑) 既然通过计算的方法得不出结果,那么就应当由众多实验中取得。对于一般工程技术人员,受到众多条件的限制,要完成这些实验取得数据,就有很大的困难。并且,国内也没有这方面的详细数据。在一些专业资料中,所给的值都是较大的一个范围,并相差很远。如《燃气输配》中认为,在地上容器可取K=41~62KJ/m2.S.K,对于地下容器可取K=10-20KJ/m2.S.K;《燃气工程手册》则认为,对地上5