康托尔与集合论(1)(2)
2015-09-23 01:11
导读:康托一下子就表现出比海涅更强的研究能力。他决定尽可能多地取消限制,当然这会使问题本身增加难度。为了给出最有普遍性的解,康托引进了一些新的
康托一下子就表现出比海涅更强的研究能力。他决定尽可能多地取消限制,当然这会使问题本身增加难度。为了给出最有普遍性的解,康托引进了一些新的概念。在其后的三年中,康托先后发表了五篇有关这一题目的文章。1872年当康托将海涅提出的一致收敛的条件减弱为函数具有无穷个间断点的情况时,他已经将唯一性结果推广到允许例外值是无穷集的情况。康托1872年的论文是从间断点问题过度到点集论的极为重要的环节,使无穷点集成为明确的研究对象。
集合论里的中心,难点是无穷集合这个概念本身。从希腊时代以来,无穷集合很自然地引起数学家们和哲学家们的注意。而这种集合的本质以及看来是矛盾的性质,很难象有穷集合那样来把握它。所以对这种集合的理解没有任何进展。早在中世纪,人们已经注意到这样的事实:如果从两个同心圆出发画射线,那么射线就在这两个圆的点与点之间建立了一一对应,然而两圆的周长是不一样的。16世纪,伽俐略还举例说,可以在两个不同长的线段ab与cd之间建立一一对应,从而想象出它们具有同样的点。
他又注意到正整数可以和它们的平方构成一一对应,只要使每个正整数同它们的平方对应起来就行了:
1234……n……
234……n……
但这导致无穷大的不同的“数量级”,伽俐略以为这是不可能的.因为所有无穷大都一样大。
不仅是伽俐略,在康托之前的数学家大多不赞成在无穷集之间使用一一对应的比较手段,因为它将出现部分等于全体的矛盾.高斯明确表态:“我反对把一个无穷量当作实体,这在数学中是从来不允许的。无穷只是一种说话的方式……”柯西也不承认无穷集合的存在。他不能允许部分同整体构成一一对应这件事。当然,潜无穷在一定条件下是便于使用的,但若把它作为无穷观则是片面的。数学的发展表明,只承认潜无穷,否认实无穷是不行的。康托把时间用到对研究对象的深沉思考中。他要用事实来说明问题,说服大家。康托认为,一个无穷集合能够和它的部分构成一一对应不是什么坏事,它恰恰反应了无穷集合的一个本质特征。对康托来说,如果一个集合能够和它的一部分构成一一对应,它就是无穷的。它定义了基数,可数集合等概念。并且证明了实数集是不可数的代数数是可数的.康托最初的证明发表在1874年的一篇题为《关于全体实代数数的特征》的文章中,它标志着集合论的诞生。
(科教作文网http://zw.ΝsΕAc.Com编辑整理)
随着实数不可数性质的确立,康托又提出一个新的,更大胆的问题。1874年,他考虑了能否建立平面上的点和直线上的点之间的一一对应。从直观上说,平面上的点显然要比线上的点要多得多。康托自己起初也是这样认识的。但三年后,康托宣布:不仅平面和直线之间可以建立一一对应,而且一般的n维连续空间也可以建立一一对应!这一结果是出人意外的。就连康托本人也觉得“简直不能相信”。然而这又是明摆着的事实,它说明直观是靠不住的,只有靠理性才能发现真理,避免谬误。
既然n维连续空间与一维连续统具有相同的基数,于是,康托在1879到1884年间集中于线性连续统的研究,相继发表了六篇系列文章,汇集成《关于无穷的线性点集》。前四篇直接建立了集合论的一些重要结果,包括集合论在函数论等方面的应用。其中第五篇发表于1883年,它的篇幅最长,内容也最丰富。它不仅超出了线性点集的研究范围,而且给出了超穷数的一个完全一般的理论,其中借助良序集的序型引进了超穷序数的整个谱系。同时还专门讨论了由集合论产生的哲学问题,包括回答反对者们对康托所采取的实无穷立场的非难。这篇文章对康托是极为重要的。1883年,康托将它以《集合论基础》为题作为专著单独出版。
《集合论基础》的出版,是康托数学研究的里程碑。其主要成果是引进了作为自然数系的独立和系统扩充的超穷数。康托清醒地认识到,他这样做是一种大胆的冒进。“我很了解这样做将使我自己处于某种与数学中关于无穷和自然数性质的传统观念相对立的地位,但我深信,超穷数终将被承认是对数概念最简单、最适当和最自然的扩充。”《集合论基础》是康托关于早期集合理论的系统阐述,也是他将做出具有深远影响的特殊贡献的开端。