论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
对这一点,需要对算法做如下改进:所有预测中所有的重建帧像素值用输入帧的原始值代替。通过这样的改进,4×4的帧内预测和变换可以在宏块的流水线上顺利地实现。
2.2 16×16帧内预测
图3给出了16×16帧内预测的数据相关性。当前宏块的预测是基于重建帧中位于当前宏块位置上方的17个像素和左侧的16个像素的。因为对当前宏块进行预测时左边宏块的重建可能并未完全完成,当用到当前宏块位置左侧的那些像素时就用原始像素代替。
2.3 编码模式选择
按照前面所给出的改进算法,如果只是简单地用原始像素代替重建像素的话会造成编码模式选择的误差。图4给出了帧内编码的率失真改进的曲线,仿真的序列是“Claire”、10fps。从图4中可以看出,由编码模式选择的误差引起的PSNR下降是很明显的。原始像素是属于同一帧的,而重建像素经过帧间或帧内编码去除了冗余度,所以与重建像素相比原始像素有更高的相关性。因而用改进后的帧内预测算法产生的误差要比用原算法大得多。为了减少编码模式选择的误差,还需要对误差代价函数(error cost function)进行修改。现在的做法是增加一个误差项。这个误差项体现原始像素和重建像素之间的差值。因为量化参数(QP)能够影响原始像素和重建像素之间的不匹配,所以误差项的确定与量化参数值有关。在H.264中,随着量化参数的线性增加,量化对编码的影响是呈指数增加的。为了符合这种影响的增长趋势,误差项的基本形式确定了a/b(51-Qp),其中a和b是待定系数。如何确定a和b是影响误差消除的关键。
在H.264中,每级Qp的增量是12%,所以理论上与之相匹配的参数b应该设置为1.12。但是误差代价函数的计算是在哈达码变换