计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

基于双环控制和重复控制的逆变器研究(2)

2017-08-06 06:14
导读:模拟控制系统的闭环极点离虚轴越远则动态响应越快,但无法将其配置到s平面的负无穷处,而s平面的负无穷被映射到z平面原点,若将数字控制系统的闭环


模拟控制系统的闭环极点离虚轴越远则动态响应越快,但无法将其配置到s平面的负无穷处,而s平面的负无穷被映射到z平面原点,若将数字控制系统的闭环极点全部配置到平面原点,则可以达到极快的动态响应速度,这就是所谓的无差拍技术。

由于本方案实现了输出电压解耦和负载电流补偿,电流环和电压环的结构大大简化,控制器的设计可以简单到仅仅采用P环节。这里采用无差拍原理确定电流环控制器KC和瞬时电压环控制器KV。

2.1.1 电流环设计

图4(a)所示为电流环框图,为了实现输出电压交叉反馈解耦,控制算法由式(2)给出。

vcom(k)=KC〔iL*(k)-iL(k)〕+vc(k) (2)

式中:iL*是电感电流指令;

vcom是电流环计算出的控制量。

图4(b)是解耦后简化的电流环框图,ZOH是零

上一篇:锁相放大技术在蓄电池内阻检测中的应用 下一篇:没有了