论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
3.1 多管串联的两电平变换电路
将器件串联使用,是满足系统容量要求的一个简单直观的办法。串联在一起的各个器件,被当作单个器件使用,其控制也是完全相同的。这种结构的优点是可利用较为成熟的低压变频器的电路拓扑,控制策略和控制方法;其缺点是串联开关管需要动态均压和静态均压。这是因为串联器件开、关时间不一致,最后开通或最先关断的器件将承受全部电源电压,这就必然影响到它的可靠运行,所以,电力电子器件串联运行时应有相应的均压措施,而均压电路使系统复杂化,损耗增加,效率下降。另外,为使串联器件同时导通和关断,对驱动、控制电路的要求也大大提高。图1为多管串联的两电平主电路拓扑结构。
3.2 中点钳位型多电平拓扑结构
3.2.1 二极管钳位型多电平结构
为了解决器件直接串联时的均压问题,逐渐发展出以器件串联为基础,各器件分别控制的变流器结构。在这方面,日本学者A.Nabae于1983年提出的中点钳位型PWM逆变电路结构具有开创性的意义。单相中点二极管钳位型变流器的结构如图2所示,该变流器的输出电压为三电平。如果去掉两个钳位二极管,这种变流器就是用两个功率器件串联使用代替单个功率器件的半桥逆变电路。由于两个钳位二极管的存在,各个器件能够分别进行控制,因而避免了器件直接串联引起的动态均压问题。与普通的二电平变流器相比,由于输出电压的电平数有所增加,每个电平幅值相对降低,由整个直流母线电压降为一半直流母线电压,在同等开关频率的前提下,可使输出波形质量有较大的改善,输出dv/dt也相应下降,因此,中点钳位型变流器显然比普通二电平变流器更具优势。
(科教论文网 lw.nSeAc.com编辑发布)
增加分压电容