宇宙时空论(5)
2017-08-19 05:46
导读:动能是物体具有速度产生的,速度是位移的时间变化率,是随着时间流逝造成的,要用去时间能量,动能的时间为负,势能象引力势能,弹性势能都来自引
动能是物体具有速度产生的,速度是位移的时间变化率,是随着时间流逝造成的,要用去时间能量,动能的时间为负,势能象引力势能,弹性势能都来自引力作用,源于引力场,,引力场的时间为正,势能的时间就成为正值,动能和势能的相互转化产生了振动,振动的最大特点是重复性,因为有了回复力。当动能转化为势能时,时间由负值变成正值,正的时间是向过去走的,可以恢复到从前,于是振子就回到初始状态,由势能转化为动能,时间成为负值,回到了从前,自然又会象从前那样运动,动能又转化为势能。振子受到的力是一定的,不计阻力可以完全回到从前,振动的取值就成为恒定的。振动总是相对于平衡位置反复进行,当振子离开平衡位置的最大位移时,势能最大,势能为引力,平衡位置就可以看作是引力中心。
振动向外传播形成波,波是能量传递的一种方式,能量为时空子,虚子的永恒运动。波就是先天物质规律组合成的,振动传递到哪里就使哪里的时空子或虚子规律组合成波。使波发生衍射的小孔是宏观物质,在它周围存在着引力场,引力场会使引力子进行有序化运动,因此小孔对波也具有引力作用。当小孔的宽度和波长差不多大时,小孔对波产生的引力作用就等于或大于产生波的势能所形成的引力作用,此时形成波的引力子就会脱离由振动产生的引力束缚,而围绕小孔进行有序化运动。小孔就成为它的引力中心,因而波就会在小孔的引力作用下改变传播方向,于是就发生了波的衍射现象。当小孔的宽度比波长大的越多,衍射现象越不显著,主要是小孔越宽,波距离小孔壁就越远,小孔对波的引力作用也就逐渐减弱,小孔的引力场对波产生的引力作用就大大小于产生波的势能,波就不再受它的引力束缚,可以依照原来的方向状态传播,不会发生衍射现象。
(科教作文网http://zw.NSEaC.com编辑发布)
波源于引力作用,微观粒子的波动性也起源于引力作用。波动理论认为:波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。振幅为振动物理量偏离平衡位置的最大位移,如果把平衡位置看作是引力中心,那么振幅绝对值的平方就为粒子在引力作用下可运动的一般范围。这说明粒子在某一点出现的行为,并不是偶然出现的情况。粒子在哪一个地方出现是依照它本身的运动状况和具有的动能以及所受到的引力大小等综合因素来决定它的位置。因此说粒子在运动中出现的行为并不是以几率的方式存在,而是在引力作用下按一定轨道运行时所产生的。由于它们之间质能的微小差异,再加上运动状况和距离引力中心的位置不同及其它引力场的作用等不同因素的影响,所受到的引力大小和方向也就各不相同,在引力作用下就可以出现在允许范围内的不同位置,这就表现为几率形式。
原子核外的电子没有确定的轨道,是以几率的方式出现(3)。电子具有轨道磁矩和自旋磁矩,原子核具有核磁矩,组成原子的质子、中子也都具有磁矩。因此电子在运动过程中还要受到磁场力的作用。电子绕核运动的同时还有自旋运动,原子核及组成核的质子、中子也都不断地进行自旋运动,电子在运动过程中总是受到几种综合磁力的影响,再加上电子的磁力与原子核的磁力也相互作用,当它们同名磁极相遇时就互相排斥,异名磁极相遇时就互相吸引,在原子核的磁力作用下,包括质子、中子的磁力,会使电子距离核的远近也就不再相同。由于电子与原子核及组成核的质子、中子总在不断地进行相对运动,因此在不同时刻电子与原子核的相对位置也不同,它所受到的磁场力的大小和方向也就不同,总在不断地变化着,磁场力对电子的影响或大或小,或方向相反,或着吸引、排斥,这就使电子的绕核运动方向和距离核远近的位置也总在改变,不再确定。因此,原子核外的电子没有确定的轨道,总是时而出现在这里,时而出现在那。电子之所以出现在一个比较固定的区域里,是因为它受到的电磁力是有一定距离的,当超过这一距离时,磁场力很难对它发生作用,它要受到静电引力的束缚。