梯度功能材料的研究进展_材料毕业论文(3)

2013-04-27 02:33
导读:4.2.3.5 气相沉积法 气相沉积是利用具有活性的气态物质在基体表面成膜的技术。通过控制弥散相浓度,在厚度方向上实现组分的梯度化,适合于制备薄膜型及

4.2.3.5 气相沉积法
气相沉积是利用具有活性的气态物质在基体表面成膜的技术。通过控制弥散相浓度,在厚度方向上实现组分的梯度化,适合于制备薄膜型及平板型FGM[8]。该法可以制备大尺寸的功能梯度材料,但合成速度低,一般不能制备出大厚度的梯度膜,与基体结合强度低、设备比较复杂。采用此法己制备出Si-C、Ti-C、 Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。气相沉积按机理的不同分为物理气相沉积(PVD) 和化学气相沉积(CVD) 两类。
化学气相沉积法(CVD)是将两相气相均质源输送到反应器中进行均匀混合,在热基板上发生化学反应并使反映产物沉积在基板上。通过控制反应气体的压力、组成及反应温度,精确地控制材料的组成、结构和形态,并能使其组成、结构和形态从一种组分到另一种组分连续变化, 可得到按设计要求的FGM。另外,该法无须烧结即可制备出致密而性能优异的FGM,因而受到人们的重视。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制备过程包括:气相反应物的形成;气相反应物传输到沉积区域;固体产物从气相中沉积与衬底[12]。
物理气相沉积法(PVD)是通过加热固相源物质,使其蒸发为气相,然后沉积于基材上,形成约100μm 厚度的致密薄膜。加热金属的方法有电阻加热、电子束轰击、离子溅射等。PVD 法的特点是沉积温度低,对基体热影响小,但沉积速度慢。日本科技厅金属材料研究所用该法制备出Ti/ TiN、Ti/ TiC、Cr/ CrN 系的FGM [7~8、10~11]
4. 2. 4 形变与马氏体相变[8]
通过伴随的应变变化,马氏体相变能在所选择的材料中提供一个附加的被称作“相变塑性”的变形机制。借助这种机制在恒温下形成的马氏体量随材料中的应力和变形量的增加而增加。因此,在合适的温度范围内,可以通过施加应变(或等价应力) 梯度,在这种材料中产生应力诱发马氏体体积分数梯度。这一方法在顺磁奥氏体18 -8 不锈钢(Fe -18% ,Cr -8 %Ni) 试样内部获得了铁磁马氏体α体积分数的连续变化。这种工艺虽然明显局限于一定的材料范围,但能提供一个简单的方法,可以一步生产含有饱和磁化强度连续变化的材料,这种材料对于位置测量装置的制造有潜在的应用前景。 (转载自http://www.NSEAC.com中国科教评价网)
4. 3 FGM的特性评价
功能梯度材料的特征评价是为了进一步优化成分设计,为成分设计数据库提供实验数据,目前已开发出局部热应力试验评价、热屏蔽性能评价和热性能测定、机械强度测定等四个方面。这些评价技术还停留在功能梯度材料物性值试验测定等基础性的工作上[7]。目前,对热压力缓和型的FGM主要就其隔热性能、热疲劳功能、耐热冲击特性、热压力缓和性能以及机械性能进行评价[8]。目前,日本、美国正致力于建立统一的标准特征评价体系[7~8]。

5 FGM的研究发展方向

5.1 存在的问题
作为一种新型功能材料,梯度功能材料范围广泛,性能特殊,用途各异。尚存在一些问题需要进一步的研究和解决,主要表现在以下一些方面[5、13]:
1)梯度材料设计的数据库(包括材料体系、物性参数、材料制备和性能评价等)还需要补充、收集、归纳、整理和完善;
2)尚需要进一步研究和探索统一的、准确的材料物理性质模型,揭示出梯度材料物理性能与成分分布,微观结构以及制备条件的定量关系,为准确、可靠地预测梯度材料物理性能奠定基础;
3)随着梯度材料除热应力缓和以外用途的日益增加,必须研究更多的物性模型和设计体系,为梯度材料在多方面研究和应用开辟道路;
4)尚需完善连续介质理论、量子(离散)理论、渗流理论及微观结构模型,并借助计算机模拟对材料性能进行理论预测,尤其需要研究材料的晶面(或界面)。
5)已制备的梯度功能材料样品的体积小、结构简单,还不具有较多的实用价值;
6)成本高。
5.2 FGM制备技术总的研究趋势[13、15、19-20]
1)开发的低成本、自动化程度高、操作简便的制备技术;
2)开发大尺寸和复杂形状的FGM制备技术;
3)开发更精确控制梯度组成的制备技术(高性能材料复合技术); (科教作文网http://zw.nseac.com编辑发布)
4)深入研究各种先进的制备工艺机理,特别是其中的光、电、磁特性。
5.3 对FGM的性能评价进行研究[2、13]
有必要从以下5个方面进行研究:
1)热稳定性,即在温度梯度下成分分布随 时间变化关系问题;
2)热绝缘性能;
3)热疲劳、热冲击和抗震性;
4)抗极端环境变化能力;
5)其他性能评价,如热电性能、压电性能、光学性能和磁学性能等

6 结束语

  FGM 的出现标志着现代材料的设计思想进入了高性能新型材料的开发阶段[8]。FGM的研究和开发应用已成为当前材料科学的前沿课题。目前正在向多学科交叉,多产业结合,国际化合作的方向发展。

参考文献:
[1] 杨瑞成,丁旭,陈奎等.材料科学与材料世界[M].北京:化学工业出版社,2006.
[2] 李永,宋健,张志民等.梯度功能力学[ M].北京:清华大学出版社.2003.
[3]王豫,姚凯伦.功能梯度材料研究的现状与将来发展[J].物理,2000,29(4):206-211.
[4] 曾黎明.功能复合材料及其应用[M]. 北京:化学工业出版社,2007.
[5] 高晓霞,姜晓红,田东艳等。功能梯度材料研究的进展综述[J]. 山西建筑,2006, 32(5):143-144.
[6] Erdogan, F.Fracture mechanics of functionally graded materials[J].Compos. Engng,1995(5):753-770.
[7] 李智慧,何小凤,李运刚等. 功能梯度材料的研究现状[J]. 河北理工学院学报,2007, 29(1):45-50.
[8] 李杨,雷发茂,姚敏,李庆文等.梯度功能材料的研究进展[J]. 菏泽学院学报,2007, 29(5):51-55.
[9] 林峰.梯度功能材料的研究与应用[J].广东技术师范学院学报,2006,6:1-4.
[10] 庞建超,高福宝,曹晓明.功能梯度材料的发展与制备方法的研究[J]. 金属制品,2005,31(4):4-9.
[11] 戈晓岚,赵茂程.工程材料[ M].南京:东南大学出版社,2004.

(科教作文网http://zw.nseac.com编辑发布)


[12] 唐小真.材料化学导论[M].北京:高等教育出版社,2007.
[13] 李进,田兴华.功能梯度材料的研究现状及应用[J]. 宁夏工程技术,2007, 6(1):80-83.
[14] 戴起勋,赵玉涛.材料科学研究方法[M] .北京:国防工业出版社,2005.
[15] 邵立勤.新材料领域未来发展方向 [J]. 新材料产业, 2004,1:25-30.
[16] 自蔓延高温合成法.材料工艺及应用http://etsc.hnu.cn/jxzy/jlkj/data/clkxygcgl/clgy/clgy16.htm
上一篇:溴化锂制冷机COP的调查分折_材料毕业论文 下一篇:没有了