纳米结构材料在锂离子电池中的应用进展(2)
2013-05-06 18:02
导读:表2:负极特性表 表3:电解液材料 国内外锂电池生产企业 国内的中信国安盟固利、余姚金和、杉杉科技、国泰华荣等厂商在正极材料、负极材料、电解液
表2:负极特性表
表3:电解液材料
国内外锂电池生产企业
国内的中信国安盟固利、余姚金和、杉杉科技、国泰华荣等厂商在正极材料、负极材料、电解液竞争力逐渐增强,而在隔离膜市场还需奋起直追。在下游锂电池市场,深圳比亚迪、深圳比克、深圳邦凯科技、TCL金能等厂商已在全球锂电池市场占据相当大的市场份额。中国已形成锂电池相对完整的产业链,在锂电池材料的配套方面占有一定的优势。
国外主要锂电池生产商及其产品见下表。
表4:国外主要锂电池生产商及其产品
参考文献
[1] 吴宇平等著,锂离子电池,化学出版社,2004
[2] Mao, O. & Dahn,J. R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li ion batteries. III. Sn2Fe:SnFe3C active/inactive composites. J. Electrochem. Soc. 146, 423-427 (1999).
[3] Graetz et al. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194-197 (2003).
[4] Yang, J. et al. Si/C composites for high capacity lithium storage materials. Electrochem. Solid-State Lett. 6, A154-156 (2003).
[5] Novak, P. et al. in Int. Meeting Li Batteries IMLB12 Nara, Japan Abstract 9 (2004).
[6] Armstrong, A. R. et al. Lithium intercalation intoTiO2-B nanowires. Adv. Mater. 17 , 862 - 865 (2005)
[7] Green, M. et al. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 6, A75-79 (2003).
[8] Yang Z H , Wu H Q . [J ] . Chemical Physisc Letters , 2001 , 343 : 235-240.
(转载自中国科教评价网http://www.nseac.com)
[9] Frackowia K E , Gautie R S , Garche R H , et al . [J ] . Carbon , 1999 , 37 ,61-69.
[10] Larcher, D. et al. Effect of particle size on lithium intercalation into α-Fe2O3. J. Electrochem. Soc. 150, A133-139 (2003).
[11] 郑雪萍,曲选辉,锂离子电池正极材料LiMn2O4研究现状,稀有金属快报,2005.
[12] Dong, W, et al. Electrochemical properties of high surface area vanadium oxides aerogels. Electrochem. Solid State Lett. 3, 457-459 (2000)
[13] Robertson, A. D. et al. Layered LixMnyCo1-yO2 intercalation electrodes: inß uence of ion exchange on capacity and structure upon cycling. Chem. Mater. 13, 2380-2386 (2001).
[14] Kang, S. H. et al. Effect of ball-milling on 3 V capacity of lithium manganese oxospinel cathodes. Chem. Mater. 13, 1758-1764 (2001).
[15] Huang, H., Yin, S.-C. & Nazar, L. F. Approaching theoretical capacity of LiFePO4 at room temperature and high rates. Electrochem. Solid-State Lett. 4, A170-172 (2001).
[16] Croce, F. et al. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456-458 (1998).
[17] Hawett, P. C., MacFarlane, D. R. & Hollenkamp, A. F. High lithium metal cycling efÞ ciency in a room-temperature ionic liquid. Electrochem. Solid-State Lett. 7, A97-101 (2004).
[18] MacGlashan, G.et al. The structure of poly(ethylene oxide)6:LiAsF6. Nature 398, 792-794 (1999).
[19] Gadjourova, Z. et al. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520-523 (2001).
[20] Christie, A. M. et al. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50-53 (2005).
[21] ANTONINO SALVATORE ARICÒ, et al. Nature Materials 4, 366–377 (2005)
(转载自http://zw.NSEAC.com科教作文网)