生物合成材料聚β-羟基丁酸(PHB)的研究进(2)
2013-06-28 01:04
导读:国内外对于高效菌种的选育主要有构建基因工程菌法和紫外线诱变法。1987年,吉利亚James Madison大学的Dennis成功地从A.eutrophus中克隆到合成PHB的基因,并转入
国内外对于高效菌种的选育主要有构建基因工程菌法和紫外线诱变法。1987年,吉利亚James Madison大学的Dennis成功地从A.eutrophus中克隆到合成PHB的基因,并转入E.coil中构建成重组E.coil突变株,其细胞比正常细菌细胞大10倍,该菌株可以直接利用各种碳源,如葡萄糖、蔗糖、乳糖、木糖等廉价底物,进一步降低了成本。奥地利维也纳大学在组建工程大肠杆菌的同时引入热敏噬菌体溶解基因,可使细菌易裂解释放PHB,这一成果的最大特点是可降低提取成本,为推向市场打下基础。在国内也有一些紫外诱变法筛选优良菌株的研究,使原始菌株PHB产量得到很大的提高,如国家重点基础研究发展计划项目中徐爱玲、张帅等采用紫外线照射和放射性元素钴60辐射诱变方法,对Acidiphilium cryptum DX1-1进行了诱变改良,诱变后筛选得到的一株菌UV60-3,PHB含量达到28.56g/L,是原菌株的1.45倍,并且可稳定遗传。对菌株UV60-3积累PHB的碳氮比进行了探索,结果显示在碳源浓度60g/L,氮源浓度30 g/L,C/N为3.76时PHB含量最高,PHB含量达到30.57g/L。[3]
2.1.3活性污泥合成PHB
利用活性污泥的混合碳源与微生物群合成PHB 是生物合成PHB 的一条新途径,既处理了污水,又降低了合成费用,而且得到的产物其性能比单一菌株在纯碳源培养得到的PHB要优越。在污水处理过程中,活性污泥微生物常常将可快速降解的碳源物质贮存为PHA,而不是首先将它们用于生物量的增长,因此,可以通过适当的工艺调控将活性污泥驯化为PHA的生产者。日本东京大学的Satoh.H. 研究小组发现采用“微嗜气2好气”供气过程可以提高PHB在污泥中的产量,[4、5]表明了工艺过程、营养组成及条件控制影响PHAs的产率。中国科学院生态环境研究中心曲波、刘俊新在活性污泥合成可生物降解塑料PHB的工艺优化研究中结果中表明——溶解氧(DO)浓度、pH值和底物-生物量比(food-microorganism ratio,F/M)是对PHB生产影响的关键参数底物的吸收速率、PHB产率和胞内含量均随溶解氧浓度的提高而提高,本研究最优操作条件下获得的PHB 含量已经接近纯培养方法所获得的典型的PHB 含量,展现了活性污泥合成PHB 的应用前景。[6]
大学排名
2.2转基因植物法
由于PHB的高成本生产和生物技术的进步,人们开始将注意力转移到用转基因植物来生产PHB,1992年,Poirier首先探讨了用植物生产PHB的可行性,在拟南芥细胞质中定向合成PHB但是拟南芥的生长却受到抑制,把细菌PHB生物合成的途径定位于质体中,PHB占叶子干重的40%,但发现了植物生长和PHB含量有负关系。John等对用转基因棉花合成PHB做了尝试。转基因棉花纤维的长度,强度都正常,但其绝缘性能却提高了。热性能改变很小,可能是因为只有很少量的PHB在纤维细胞的细胞质中(占纤维重的0.34%)[7]王潮岗、胡章立以莱茵衣藻(Chlamydomonas reinhardtii)作为受体材料,将合成的相关酶基因phbB和phbC导入衣藻中,实现了PHB在胞质中的合成,但含量较少。
3PHB性能的改良
PHB是一种全同立构结晶性的聚酯,结晶度高达80%,常温及玻璃化温度(4℃)下表现为脆性,耐冲击性能较差;加工成型只能在190℃附近的一个狭窄的温度区间内进行,且熔融状态极不稳定,易发生降解。这些缺点使其无法作为一种实用的塑料使用,同时也限制了在降解材料方面的应用。PHB改性主要体现在增韧和增塑改性,PHB增韧主要通过弹力体、聚乙二醇(PEO)、淀粉等与之共混改性,文献报道的有效增塑剂有低相对分子质量PEO、柠檬酸三丁(三乙)酯、三乙酸(丁酸)甘油酯、ESO等从改良途径讲主要有物理共混、化学改性、生物改性。
4PHB的降解
PHB的生物降解归因于许多细菌和真菌能够分泌胞外PHB解聚酶PHB在解聚酶的作用下得到3-羟基丁酸,经过三羟基丁酸脱氢酶、乙酰乙酰辅酶和β-酮硫解酶作用下依次得到三羟基丁酸、乙酰乙酰辅酶A、乙酰辅酶A最后进入TCA循环。
国外从60年代陆续开展了有关降解PHB的工作,但绝大部分菌株是近些年来获得的。1963年Chowdhury首次发现降解PHB的微生物,它们是Bacillus,Seudomonas和Streptomyces,随后人们陆续动环境中分离出其他一些能降解PHB的微生物类型。直接用从自然界中筛选的菌种产生的PHB降解酶的活性比较低,降解PHB的速度比较缓慢。近几年有许多学者通过紫外线诱变获得了高产PHB的菌株。次素琴、陈珊等以降解聚2β羟基丁酸酯(PHB)的青霉(Penicillium sp1)DS9713a为出发菌株,通过紫外线(UV)诱变分生孢子,采用透明圈初筛和摇瓶复筛,获得酶活高于原始菌株的突变株5株,其中DS9713a-CS01突变株的PHB解聚酶活力高于对照97.42%。[8]中国科学院研究所戴美学等根据苜蓿根瘤菌(Sinorhizobium meliloti)Rm1021基因组中与Ralstonia eutropha phaZ基因同源部分序列设计1对引物,从S.meliloti基因组中用PCR扩增出835bp phbD基因片段并克隆到载体PGEM○R-T Easy上;通过在phbD 基因内插入ΩSmSp和基因置换构建了phbD突变体。该突变体可积累比野生型菌株多1.0~2.6倍的聚羟丁酶。[9] (科教范文网http://fw.NSEAC.com编辑发布)
5展 望
PHB作为最具代表性的一类生物塑料,具有良好的生物相容性和生物降解性。但是由于其生产菌的产量不高,生产菌在生长过程中所消耗的原料价格较高,天然产物的机械性能差,很多降解菌不能降解胞外的PHB等缺点影响了其使用,近年来,有大量的学者对此进行研究并取得了很大的进展。在能源与经济、环保相协调的今天,随着科技的进步,人们环保意识的增强,PHB将就有广阔的前景。
参考文献