计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

[免费]基于单片机的恒压供水系统设计(一)信(2)

2013-06-24 01:10
导读:图2-5本泵工作点的确定 2.3.2水泵变频调速节能分析 水泵运行工况点A是水泵性能曲线n1和管道性能曲线R1的交点。在常规供水系统中,采用阀门控制流量,需

 
  图2-5本泵工作点的确定

2.3.2水泵变频调速节能分析
 水泵运行工况点A是水泵性能曲线n1和管道性能曲线R1的交点。在常规供水系统中,采用阀门控制流量,需要减少流量时关小阀门,管路性能曲线有R1变为R2.运行工况点沿着水泵性能曲线从A点移到D点,扬程从H0上升到H1,流量从Q0减少到Q1。采用变频调速控制时,管路性能曲线R1保持不变,水泵的特性取决于转速,如果水泵转速从n0降到n1,水泵性能曲线从n0平移到n1,运行工况点沿着水泵性能曲线从A点移到C点,扬程从H0下降到H1,流量从Q0减少到Q1.在图2-5中水泵运行在B点时消耗的轴功率与H1BQ1O的面积成正
比,运行在C点时消耗的轴功率与H2CQ1O的面积成正比,从图2-6上可以看出,在流量相同的情况下,采用变频调速控制比恒速泵控制节能效果明显。


 

图2-6变频调速恒压供水单台水泵工况调节图
 求出运行在B点的泵的轴功率               
运行在C点泵的轴功率              
两者之差:
              

 也就是说,采用阀门控制流量时有ΔV的功率被白白浪费了,而且损耗阀门的关小而增加。
 相反,采用变频调速控制水泵电机时,当转速在允许范围内降低时,功率以转速的三次方下降,在可调节范围内与恒速泵供水方式中用阀门增加阻力的流量控制方式相比,节能效果显著。
2.3.3调速范围的确定
 考察水泵的效率曲线,水泵转速的工况调节必须限制在一定范围之内,也就是不要使变频器效率降得过低,避免水泵在低效率段运行。水泵的调速范围由水泵本身的特性和用户所需扬程规定,当选定某型号的水泵时即可确定此水泵的最大调速范围,在根据用户的扬程确定具体降低调速范围,在实际配泵时扬程设定在高效区,水泵的调速范围将进一步变小,其频率变化范围在40Hz以上,也就是说转速下降在20%以内。在此范围内,电动机的负载率在50%~100%范围内变化,电动机的效率基本上都在高效区。 (科教范文网 lw.nseaC.Com编辑发布)
2.4本章小结
 本章从水泵理论和管网特性曲线分析入手讨论水泵工作点的确定方法。接着介绍了水泵工况调节的几种常用方法。在变频调速恒压供水系统中,水泵工况的调节是通过改变水泵性能曲线得以实现的。本章重点对变频调速恒压供水系统中水泵能耗机理进行深入研究,得到以下几个结论:
 1.水泵的工作点就是在同一坐标系中水泵的性能曲线和管路性能曲线的交点。水泵工作点是水泵运行的理想工作点。实际运行时水泵的工作点并非总是固定不变的。
 2.水泵工况的调节就是采用改变管路性能曲线或改变水泵性能曲线的方法来移动工作点,使其符合要求。
 


变频恒压调速供水系统硬件设计
 系统单元设计主要包括CPU基本控制单元、电路定时复位电路、A/D转换电路、D/A转换电路、显示电路和相应的开关电路。
 


图3-1 系统硬件结构框图


3.1硬件总体说明
 单片机系统的硬件结构框架图如图3-1所示。
 本系统以8951单片机为核心,它有4KEPROM,所以不用外扩EPROM,这样可以利用P0、P2口作为输入、输出I/O口,简化了硬件结构。系统的显示采用4片74LS164驱动LED,使用8951的串行通讯口TXD,DXD。93C46为串行EEPROM,用于保存开机设定的原始参数。采用NE555组成硬件定时复位电路,
可以有效防止程序死机现象。74LS273用于对继电器输出状态硬件锁存,以防止输出状态被干扰。ULN2003为反向驱动芯片,同时在74LS273的CLEAR管脚外接RC电路,用于开机时使74S273的输出端清零,用于防止继电器的误动作,对变频器起到了保护作用。在报警输入端与CPU 之间采用光耦隔离,以消除外部干扰。系统A/D输入采用8位TLC0831逐次逼近模数转换器,D/A输出采用了光耦离式D/A输出,并采用LM358双运放组成D/A输出及驱动电路。P3.3定时输出占空比与频率相对应的PWM调制信号,通过二极运算放大电路后,在LM358的第7引脚输出与频率相对应的电压信号。在输出端调节电位器可以调节输出电压的大小,两放大器之间的RC电路起到了滤波的作用。 (转载自中国科教评价网www.nseac.com )
3.2 555定时器复位电路
用NE555组成的硬件定时复位系统,可以有效地防止程序死机现象。
NE555封装和内部结构图


图3-2 NE555封装图

 如图3-3和图3-4上可知,NE555定时电路V0口输出连续的脉冲信号至RST,达到定时复位的效果。电路使用电阻电容产生RC定时电路,用于设定脉冲的周 期和脉冲的宽度。调节RW或者电容C,可以得到不同的时间常数。
 脉冲宽度计算公式:TW =0.7(R1+RW+R2)C
    振荡周期计算公式:T=0.7(R1+ RW+2*R2)C
从而通过控制振荡周期和脉冲宽度就可以控制定时时间。

 


图3-3 NE555内部结构

图 3-4 NE555定时电路及工作波形
3.3 5V单片机供电电源电路
 如图3-5所示电路为输出电压+5V、输出电流1.5A的稳压电源。它由电源变压器B,桥式整流电路D1~D4,滤波电容C1、C3,防止自激电容C2、C3和一只固定式三端稳压器(7805)极为简捷方便地搭成的。220V交流市电通过电源变压器变换成交流低压,再经过桥式整流电路D1~D4和滤波电容C1的整流和滤波,在固定式三端稳压器LM7805的Vin和GND两端形成一个并不十分稳定的直流电压(该电压常常会因为市电电压的波动或负载的变化等原因而发生变化)。此直流电压经过LM7805的稳压和C3的滤波便在稳压电源的输出端产生了精度高、稳定度好的直流输出电压。本稳压电源可作为TTL电路或单片机电路的电源。三端稳压器是一种标准化、系列化的通用线性稳压电源集成电路,以其体积小、成本低、性能好、工作可靠性高、使用简捷方便等特点,成为目前稳压电源中应用最为广泛的一种单片式集成稳压器件。
 

图3-5 LM7805稳压电源
3.4 LED数值显示 D/A数值采集 D/A数值反馈
3.4.1 LED数值显示模块
 数码管由7 个发光二极管组成,行成一个日字形,它门可以共阴极,也可以共阳极.通过解码电路得到的数码接通相应的发光二极而形成相应的字,这就是它的工作原理.基本的半导体数码管是由7 个条状的发光二极管(LED)按图1 所示排列而成的,可实现数字"0~9"及少量字符的显示。另外为了显示小数点,增加了1 个点状的发光二极管,因此数码管就由8 个LED 组成,我们分别把这些发光二极管命名为"a,b,c,d,e,f,g,dp",排列顺序如下图3-6。 (转载自中国科教评价网http://www.nseac.com
 
 图3-6 共阴数码管引脚图


图3-7 数码管封装
 数码管要正常显示,就要用驱动电路来驱动数码管的各个段码,从而显示出我们要的数字,因此根据数码管的驱动方式的不同,可以分为静态式和动态式两类 
  ① 动态显示驱动:数码管动态显示接口是单片机中应用最为广泛的一种示
方式之一,动态驱动是将所有数码管的8 个显示笔划"a,b,c,d,e,f,g,dp"的同名端连在一起,另外为每个数码管的公共极COM 增加位选通控制电路,位选通由各自独立的I/O 线控制,当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是那个数码管会显示出字形,取决于单片机对位选通COM 端电路的控制,所以我们只要将需要显示的数码管的选通控制打开,该位就显示出字形,没有选通的数码管就不会亮。通过分时轮流控制各个数码管的的COM 端,就使各个数码管轮流受控显示,这就是动态驱动。在轮流显示过程中,每位数码管的点亮时间为1~2ms,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O 端口,而且功耗更低。
 ② 静态显示驱动:静态驱动也称直流驱动。静态驱动是指每个数码管的每一个段码都由一个单片机的I/O 端口进行驱动,或者使用如BCD 码二-十进制译码器译码进行驱动。
 

图3-8 共阴极4位8段数码显示
3.4.2 数据采集A/D转换电路
1.AD0809的逻辑结构
 ADC0809 是8位逐次逼近型A/D转换器。它由一个8路模拟开关、一个地址锁存译码器、一个A/D 转换器和一个三态输出锁存器组成(见图1)。多路开关可选通8个模拟通道,允许8 路模拟量分时输入,共用A/D 转换器进行转换。三态输出锁器用于锁存A/D 转换完的数字量,当OE 端为高电平时,才可以从三态输出锁存器取走转换完的数据。 (转载自中国科教评价网www.nseac.com )
 图3-9 AD0809内部结构
2. AD0809的工作原理
IN0-IN7:8 条模拟量输入通道
ADC0809 对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。
地址输入和控制线:4条。
ALE 为地址锁存允许输入线,高电平有效。当ALE线为高电平时,地址锁存与译码器将A, B,C 三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。A,B 和C 为地址输入线,用于选通IN0-IN7 上的一路模拟量输入。通道选择表如图表3-10所示。

 

图3-10 AD0809通道选择表

 

数字量输出及控制线:11 条
ST 为转换启动信号。当ST 上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D 转换;在转换期间,ST 应保持低电平。EOC 为转换结束信号。当EOC 为高电平时,表明转换结束;否则,表明正在进行A/D 转换。OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。D7-D0 为数字量输出线。CLK为时钟输入信号线。因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF(-)为参考电压输入。
3. ADC0809应用说明
(1). ADC0809 内部带有输出锁存器,可以与AT89S51 单片机直接相连。
(2). 初始化时,使ST 和OE信号全为低电平。
(3). 送要转换的哪一通道的地址到A,B,C 端口上。
(4). 在ST 端给出一个至少有100ns 宽的正脉冲信号。
(5). 是否转换完毕,我们根据EOC 信号来判断。
(6). 当EOC变为高电平时,这时给OE 为高电平,转换的数据就输出给单片机了。

(科教范文网 lw.nseaC.Com编辑发布)


4. AD0809转换电路
电路见图3.4.2.4,主要由AD 转换器AD0809,频率发生器SUN7474,单片机AT89S51
及显示用数码管组成。AD0809的启动方式为脉冲启动方式,启动信号START启动后开始转换,EOC 信号在START 的下降沿10us后才变为无效的低电平。这要求查询程序待EOC无效后再开始查询,转换完成后,EOC 输出高电平,再由OE 变为高电平来输出转换数据。我们在设计程序时可以利用EOC 信号来通知单片机(查询法或中断法)读入已转换的数据,也可以在启动AD0809 后经适当的延时再读入已转换的数据。AT89S51的输出频为晶振频的1/6(2MHZ),AT89S1 与SUN7474连接经与7474的ST脚提供AD0809 的工作时钟。AD0809 的工作频范围为10KHZ-1280KHZ,当频率范围为500KHZ 时,其转换速度为128us。
AD0809 的数据输出公式为:Dout=Vin*255/5=Vin*51,其中Vin为输入模拟电压,Vout为输出数据。

 图3-11 A/D转换电路
5. D/A转换模块
本系统采用的一个光耦隔离式串行D/A输出,,并采用LM358双运放组成D/A输出及驱动电路,电路图如图3-12。

图3-12 光耦隔离式D/A

这里运用到了脉宽调制(PWM)的方法来控制电压模拟量,脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
6. PWM控制原理
 PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 本文来自中国科教评价网
 

图3-13 PWM占空比
图3-13显示了三种不同的PWM信号。(a)是一个占空比为10%的PWM输出,即在信号周期中,10%的时间通,其余90%的时间断。(b)和(c)显示的分别是占空比为50%和90%的PWM输出。这三种PWM输出编码的分别是强度为满度值的10%、50%和90%的三种不同模拟信号值。例如,假设供电电源为9V,占空比为10%,则对应的是一个幅度为0.9V的模拟信号。