空间数据挖掘技术研究分析-网络工程毕业论文(2)
2013-04-28 01:19
导读:处理及空间数据本身的特点。空间数据不同于关系数据库中的数据,它有其特有的空间数据访问方法,因而传统的数据挖掘技术往往不能很好地分析复杂的
处理及空间数据本身的特点。空间数据不同于关系数据库中的数据,它有其特有的空间数据访问方法,因而传统的数据挖掘技术往往不能很好地分析复杂的空间现象和空间对象。
(2) 空间数据挖掘算法的效率不高,发现模式不精练。面对海量的数据库系统,在空间数据挖掘过程中出现不确定性、错误模式的可能性和待解决问题的维数都很大,不仅增大了算法的搜索空间,也增加了盲目搜索的可能性。因而必须利用领域知识发现、去除与任务无关的数据,有效地降低问题的维数,设计出更有效的知识发现算法。
(3) 没有公认的标准化空间数据挖掘查询语言。数据库技术飞速发展的原因之一就是数据库查询语言的不断完善和发展,因此,要不断完善和发展空间数据挖掘就必须发展空间数据挖掘查询语言。为高效的空间数据挖掘奠定基础。
(4) 空间数据挖掘知识发现系统交互性不强,在知识发现过程中很难充分有效地利用领域专家知识,用户不能很好掌控空间数据挖掘过程。
(5) 空间数据挖掘方法和任务单一,基本上都是针对某个特定的问题,因而能够发现的知识有限。
(6) 空间数据挖掘与其他系统的集成不够,忽视了GIS在空间知识发现过程中的作用。一个方法和功能单一的空间数据挖掘系统的适用范围必然受到很多限制,目前开发的知识系统仅局限于数据库领域,如果要在更广阔的领域发现知识,知识发现系统就应该是数据库、知识库、专家系统、决策支持系统、可视化工具、网络等多项技术集成的系统。
上述问题使得从空间数据库中提取知识比从传统的关系数据库中提取知识更为困难,这给空间数据挖掘研究带来了挑战。因此,空间数据挖掘在未来的发展中,还有很多理论和方法有待深入研究。
(转载自http://zw.NSEEC.cn科教作文网)
4 空间数据挖掘的发展趋势
(1)空间数据挖掘算法和技术的研究。空间关联规则挖掘算法、时间序列挖掘技术、空间同位算法、空间分类技术、空间离群算法等是空间数据挖掘研究的热点,同时提高空间数据挖掘算法的效率也很重要。
(2) 多源空间数据的预处理。空间数据内容包括数字线划数据、影像数据、数字高程模型和地物的属性数据,由于其本身的复杂性与数据采集的困难,空间数据中不可避免地存在着空缺值、噪声数据及不一致数据,多源空间数据的预处理就显得格外重要。
(3)其他各种空间数据挖掘及其相关技术研究。如网络环境下的空间数据挖掘、可视化数据挖掘、栅格矢量-体化空间数据挖掘、背景知识概念树的自动生成、基于空间不确定性(位置、属性、时问等) 的数据挖掘、递增式数据挖掘、多分辨率及多层次数据挖掘、并行数据挖掘、遥感图像数据库的数据挖掘、多媒体空间数据库的知识发现等。
5 小结
空间数据挖掘可从大型空间数据库中提取感兴趣和规律性的知识,可用于理解空间数据、发现空间数据与非空间数据的关系、建立空间知识库、优化查询,重组空间数据库等,空间数据挖掘技术在广度和深度上的不断进步, 也将使GIs集成系统朝着智能化、网络化、全球化与大众化的方向发展。可以预见,空间数据挖掘不仅会促进空间科学、计算机科学的发展,而且必将增强人类认识世界、改造世界的能力,从而更好地服务人类社会。