论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
3 反义核酸技术在寄生虫学中的应用
反义核酸技术的飞速发展和成熟,使其逐渐渗透并应用到寄生虫学领域,丰富和发展了寄生虫病的基因治疗策略。反义核酸技术在抗寄生虫病研究的应用主要集中于原虫类,如疟原虫、锥虫和利什曼原虫等,而且反义核酸中又以AON方面的报道最多。下面着重就AON在寄生虫方面的研究应用作用一简要阐述。
3.1 疟原虫
疟原虫嘌呤核苷酸合成具有特殊性,即无从头合成途径,依靠补救合成途径利用体内游离的嘌呤或嘌呤核苷。疟原虫的二氢叶酸还原酶(dihydrofolate reductase,DHFR)和胸苷酸合酶(thymidylate synthase,TS)结合形成双功能蛋白(DHFR-TS),这对于维持疟原虫四氢叶酸水平和DNA合成极为重要,此酶也是疟原虫脱氧胸苷酸生物合成唯一通路中必不可少的酶。抗疟药中的抗叶酸代谢药如乙胺嘧啶,就是通过竞争性抑制DHFR-TS来阻断虫体脱氧胸苷酸生物合成。然而,随着恶性疟原虫(Plasmodium falciparum)多药抗性株的出现和广为传播,疟疾的化疗面临重大挑战,促使人们寻求新的抗疟疗法。目前,DHFR-TS是AON抗疟作用首选靶基因。
生物大分子进入感染红细胞中的疟原虫,必需穿透三层膜,即红细胞膜、纳虫泡膜和虫体的胞质膜。研究表明,不能穿透红细胞膜和纳虫泡膜的大分子和葡聚糖、IgG2a抗体和蛋白A等,可经过纳虫微管(parasitophorous duct)进入虫体,虫体通过胞吞作用直接从细胞外摄入大分子物质。因此,对于小分子的AON而言,作用于感染红细胞中的虫体完全成为可能,下述众多研究已充分证明了这一点。Rapaport等(1992)研究发现,以DHFR-TS为靶21 nt PS AON能选择性地进入恶性疟原虫感染红细胞,对体外培养的氯喹敏感株和耐药株虫体具有同等的抑制效果,而未感染疟原虫的红细胞则完全为不摄入AON,因此这对应用反义核酸于抗疟治疗非常有利。
诸多研究表明,AON越长,对转译的抑制作用就越强;AON浓度越高,非特异性抑制作用越明显,在低浓度时则呈特异性抑制。Sartorius和Franklin(1991)以DHFR-TS的mRNA为靶合成系列AON,利用兔网织红细胞翻译系统,探讨AON对体外转译的抑制作用。在DHFR翻译起始位点处合成了6条21-49nt不等长的AON,在TS编码区全成的30nt、39nt和49nt三条AON。当AON长度为30nt或更长时,呈明显转译抑制作用,抑制率可高达50%以上。其中,TS编码区的49nt aON(OTS49)抑制效果最高,当浓度在45μmlo/L时的抑制率几乎达90%,主要是因为OTS49与DHFR-TS靶mRNA结合抑制TS合成,这从翻译产物的分子量(55 kDa)要比天然DHFR-TS(71 kDa)小且无TS活性可看出。
Ramasamy等和Clark等研究表明,在较高浓度下,无论DHFR-TS正义还是反义的寡聚核苷酸(M1K,M2K),均能抑制裂殖子入侵红细胞。究其原因,可能与高浓度的AON带有较多的负电荷有关。Kanagaratnam等(1998)分析了疟原虫裂殖子表面蛋白基因的反义和正义寡聚核苷酸对疟原虫体外生长的影响,无论AON单独使用抑或与脂质体混合使用,均未观察到特异抑制效应。但在相同浓度范围内,反义和正义寡核苷酸以及具有多聚阴离子的硫酸葡聚糖,均可抑制裂殖子入侵红细胞。当寡聚核苷与阳离子脂质体结合后负电荷被中和时,则对裂殖子入侵红细胞的抑制作用被取消。由此推测,寡聚核苷酸有可能借助其多聚阴离子特性干扰裂殖子与细胞上受体结合,多聚阴离子可能对疟疾病治疗有帮助。
3.1.2 AON不同修饰物对抗疟作用影响
最近,Barker等以DHFR-TS基因为靶,比较了硫代磷酸酯化(PS)、磷酸二酯化(PO)和甲基化修饰AON,以及不同空间结构AON对体外培养虫体生长抑制作用。结果显示,5'和3'端至少含有3个PS基因的PO-PS杂合体AON、全部为PS修饰的AON,与部分PS修饰的AON抑制作用相同。在低浓度下(1μmol/L),PO-PS aON和PS AON比PS-甲基化AON抑制率高25%。此外,通过延长AON序列增加干-环结构形成,提高AON的自我稳定性,结果获得2个有干-环结构的AON(RB39、RB41),其抑虫生长率比序列未延长的AON约要高20%。