我国上市公司财务困境的预测模型研究(4)
2014-12-11 01:15
导读:表3 负债比率在财务困境前1-5年的判定模型 表5 资产周转率在财务困境前1-5年的判定模型 (三)多元线性判定模型的变量选择分析 本研究首先应用LPM,采用逐
表3 负债比率在财务困境前1-5年的判定模型


表5 资产周转率在财务困境前1-5年的判定模型


(三)多元线性判定模型的变量选择分析
本研究首先应用LPM,采用逐步回归选择变量方法,对5年的样本数据依次进行回归,从21个变量中选择若干变量。选择的标准是:F值的概率值小于0.10时进入,大于0.11时剔除。
利用财务困境前1至5年的数据,分别进行逐步回归,结果如表6所示。我们最终选取了Xl(盈利增长指数)、X3(资产报酬率)、X7(流动比率)、X11(长期负债与股东权益比率)、X12(营运资本与总资产比)、X19(资产周转率)等6个指标作为多元判定分析的变量。选取这些指标的原因是:(1)以财务困境前1年的逐步回归结果为主,参考其他年份的回归结果。由剖面分析可知,财务困境前1年的财务指标作为财务困境预测的信息含量最多,时效性最强;离财务困境发生的时间越远,指标的信息含量越少,时效性越差。所以,财务困境前1年逐步回归所得的变量全部入选。结合其他年份特别是财务困境前2年的结果,营运资本总资产比、速动比率、负债比率、应收账款周转率是表现较好的变量。(2)兼顾全面综合的信息反映,适当避免同类信息的重复反映。首先,财务困境前1年逐步回归所得的变量盈利增长指数、资产报酬率、长期负债股东权益比率、资产周转率分别是反映企业成长能力、盈利能力、长期偿债能力、营运能力的指标,但没有反映短期偿债能力的指标。营运资本与总资产比是财务困境前2年逐步回归所得的变量之一,而且参数估计值的显著性水平在0.05之上,故也把该变量作为预测变量之一。其次,速动比率是反映短期偿债能力的指标,但更能全面反映短期偿债能力是流动比率,结合剖面分析,历年两组间的流动比率和速动比率均值差异性检验统计量Z值比较接近,表明这二个指标都能反映的两组的差异性。因此,从反映短期偿债能力的全面性来考虑,我们在建模时选择了流动比率,舍弃了速动比率。再次,考虑到若企业短期偿债能力较强,会减少其在短期内陷入财务困境的概率,因此把短期偿债能力的两个指标——营运资本与总资产比和流动比率同时引入预测变量组合,加强短期偿债能力信息在预测中的比重。第四,负债比率与长期负债股东权益比同是反映企业长期偿债能力的指标,长期负债股东权益比已在财务困境前1年引入了变量组合,为避免信息的重复反映,舍弃了负债比率。最后,应收账款周转率与总资产周转率同是反映营运能力的指标,但应收账款周转率不及总资产周转率反映全面,所以反映营运能力的指标选用总资产周转率,舍弃应收账款周转率。
表6 各年逐步回归的所得的变量结果

为了避免多重共线性,对选定的6个变量进行多重共线性检验。本文使用的检验指标是容许度(TOL)和方差膨胀因子(VIF)。计算公式为:
TOLj=1—R2j=1/VIFj
其中,群为均对其余k—1个自变量回归中的判定系数R2。当TOL较小时,认为存在多重共线性。一般地,方差膨胀因子VIF大于10,认为具有高的多重共线性。VIF检验的结果见表7。从表7可知,6个变量的VIF均小于10,可认为各变量之间不存在显著的多重共线性。
表7 多重共线性检验

(四)多元线性判定模型的估计结果
1.LPM模型。根据上述选定的6个变量及其财务困境前1年的样本数据,得到LPM模型的回归结果如表8所示。LPM模型的方程可表示为: