我国上市公司财务困境的预测模型研究(5)
2014-12-11 01:15
导读:Y=0.3883 0.1065x1-2.7733x3 0.0537x7 0.1970x11-0.3687Xl2-0.1388x19 其中:Y是陷入财务困境的概率;X1是盈利增长指数;x3是资产报酬率;x7是流动比率;X11,是长
Y=0.3883 0.1065x1-2.7733x3 0.0537x7 0.1970x11-0.3687Xl2-0.1388x19
其中:Y是陷入财务困境的概率;X1是盈利增长指数;x3是资产报酬率;x7是流动比率;X11,是长期负债股东权益比率;x12是营运资本/总资产;X19是资产周转率。
表8 LPM模型的回归估计结果

线性概率方程是以70家非财务困境公司与69家财务困境公司在财务困境前1年的6个财务指标的数据为因变量值,取财务困境公司为1,非财务困境公司为0作为因变量值进行估计的。因此,理论上取0.5为最佳判定点。根据估计的模型对原始数据进行回代判定,若预测值大于0.5的,判定为财务困境公司;否则为非财务困境公司。判定结果如表9所示。
表9 LPM在财务困境前1年的判定结果

在回判过程中,70家非财务困境公司有4家被错判,误判率为5.71%;69家财务困境公司有10家被错判,误判率为14.49%;总的误判率为10.07%。判定正确率较高。采用同样的方法可以计算其他年份的最佳判定点和误判率。
2.Fisher二类线性判定模型。把财务困境公司划分为组合1,非财务困境公司划分为组合2,对样本公司的财务困境前1年的财务数据,使用同样的6个变量,估计Fisher二类线性判定分析。
对于组合1,判定模型为:
Z=-6.059 0.331x1一25.865x3 4.033x7 3.250x11-11.905x12 4.428x19
对于组合2,判定模型为:
Z=-4.859—0.812x1 3.989x3 3.432x7 1.142x11一7.734x12 5.924x19
以典则(Canonical)变量代替原始数据中指定的自变量,其中,典则变量是原始自变量的线性组合,得到典则的线性判定模型为:
(科教论文网 Lw.nsEAc.com编辑整理) Z=0.448—0.435xl 11.374x3—0.229x7—0.803x11 1.589x12 0.570x19
根据上述判定模型,以财务困境发生前1年的原始数据分别进行回代。二个组合的平均Z值分别是-1.3254和1.3065,样本个数分别为69和70,所以按完全对称原则确定的最佳判定点为z*。由此可知:当把财务困境发生前1年的原始数据代入判定模型所得的判定值Z大于Z*,则判为组合2,即非财务困境公司,否则判为组合1。由此得到的判定结果见表10。同理可计算其他年份的最佳判定点和误判率。
表10 Fisher二类线性判定模型在财务困境前1年

值得指出的是,Fisher判定模型在财务困境发生前1年的误判率为10.07%,与LPM模型的误判率相同,这从应用上证明二个模型是等价的。
3.Iosistic回归模型。使用同样的财务指标和数据,进行二元Logistic回归分析,得到模型的估计结果见表11。
表11 二元Logistic回归模型估计结果

截距模型是将所有自变量删除后只剩一个截距系数模型。当前模型是含有自变量的Logistic回归模型。“Likelihood"为似然函数值,“—2LogLikelihood"(缩写为—2LL)是似然函数值的自然对数的—2倍,常用来反映模型的拟合程度,其值越小,表示拟合程度越好。因为Idsistic模型是使用最大似然估计,似然函数值越大,则表明越接近最大似然值,拟合程度越好。从表10可见,变量x1、X3、X11的显著水平均小于0.05,说明其预测能力较强;其余3个变量的显著水平较高,说明其预测能力较弱。
方程可表示为:
log(p/(1-p))=-0.867 2.5313X2-40.2785X4 0.4597X8 3.2293X12-3.9544X13-1.7814X20