计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

数据挖掘在CRM中的应用分析(2)

2015-07-01 01:21
导读:3. 分类(Classification)。找出一个类别的概念描述,它代表了这类数据的整体信息。分类是数据挖掘中应用最多的任务。要为每个类别做出准确的描述或建

  3. 分类(Classification)。找出一个类别的概念描述,它代表了这类数据的整体信息。分类是数据挖掘中应用最多的任务。要为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用这个分类规则对其他数据库中的记录进行分类。
  4. 聚类(Clustering)。按一定规则将数据分为一系列有意义的子集。通俗地讲,就是多元统计中研究所谓“物以类聚”现象的一种方法,其职能是对一批样本或指标按它们在性质上的亲疏程度来进行分类,采用不同的聚类方法,对于相同的记录集合可能有不同的划分结果。
  5. 偏差分析(Deviation)。从数据库中找出异常数据。
  6. 预测(Prediction)。利用历史数据找出规律,建立模型,并用此模型预测未来数据的种类、特征等。
 
上一篇:浅谈广告英语的修辞 下一篇:没有了