论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
三、WAVELET影像压缩简介及基础理论介绍
一、WAVELET的压缩概念
WAVELET架在三个主要的基础理论之上,分别是阶层式边码(pyramidcoding)、滤波器组理论(filterbanktheory)、以及次旁带编码(subbandcoding),可以说wavelettransform统合了此三项技术。小波转换能将各种交织在一起的不同频率组成的信号,分解成不相同频率的信号,因此能有效的应用於编码、解码、检测边缘、压缩数据,及将非线性问题线性化。良好的分析局部的时间区域与频率区域的信号,弥补傅利叶转换中的缺失,也因此小波转换被誉为数学显微镜。
WAVELET并不会保留所有的原始资料,而是选择性的保留了必要的部份,以便经由数学公式推算出其原始资料,可能不是非常完整,但是可以非常接近原始资料。至於影像中什度要保留,什麽要舍弃,端看能量的大小储存(跟波长与频率有关)。以较少的资料代替原来的资料,达到压缩资料的目的,这种经由取舍资料而达到压缩目地的作法,是近代数位影像编码技术的一项突破。即是WAVELET的概念引入编码技术中。
WAVELET转换在数位影像转换技术上算是新秀,然而在太空科技早已行之有年,像探测卫星和哈柏望远镜传输影像回地球,和医学上的光纤影像,早就开始用WAVELET的原理压缩/还原影像资料,而且有压缩率极佳与原影重现的效果。
以往lossless的编码法只着重压缩演算法的表现,将数位化的影像资料一丝不漏的送去压缩,所以还原回来的资料和原始资料分毫无差,但是此种压缩法的压缩率不佳。将数位化的影像资料转换成利於编码的资料型态,控制解码後影像的品质,选择适当的编码法,而且还在撷取图形资料时,先帮资料「减肥」。如此才是WAVELET编码法主要的观念。
二、影像压缩过程
原始图形资料→色彩模式转换