计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

解读埃舍尔镶嵌图形(1)

2015-03-19 01:54
导读:艺术学论文论文,解读埃舍尔镶嵌图形(1)样式参考,免费教你怎么写,格式要求,科教论文网提供的这篇文章不错:埃舍尔,全名毛里茨·科内流斯·埃舍尔(Maurits Cornelius Escher),一名对现代艺
埃舍尔,全名毛里茨·科内流斯·埃舍尔(Maurits Cornelius Escher),一名对现代艺术影响深远,却被史学家遗忘的、世界艺术史上“绝无仅有的”艺术家。和其他依靠感性进行创作的艺术家不同,埃舍尔的作品是经过复杂的理性思维的产物。他从事物的精确、规则、秩序等特性中发现了美,创造了美。
  
  一、埃舍尔的镶嵌图形
  
  关于平面规则分割(平面镶嵌图形),埃舍尔写到:“在数学领域,平面规则分割已经从理论上获得了充分的研究……数学家打开了一扇通向无限可能性的大门,但是他们自身并没有进入其中看看。他们特殊的禀赋使他们对如何打开这扇门的方式更感兴趣,而对隐藏在其后的花园不感兴趣。”埃舍尔正是从一个艺术家的角度,利用数学家的发现,发掘了美,创造了美。他的平面规则分割作品令许多数学家吃惊。他在已知的17种抽象平面分割群组形式上创造了许多具象镶嵌图案。这种把抽象的几何形状赋予具象的形象其实是一种复杂的图形思维过程。要完成具象镶嵌图案的创作,对各个图形的思考必须要非常严谨,每个镶嵌图形既要考虑它的镶嵌可能性,又要赋予具体的形象,而且这种镶嵌是四面无限延伸的,这就必须要具备很强的图形(图像)联想能力。
  埃舍尔的图形镶嵌作品,可以将其分为单体镶嵌、双体镶嵌、多体镶嵌和渐变镶嵌四种形式。
  
  二、镶嵌图形的构思过程
  
  1.几何形状的演变
  通过对埃舍尔的镶嵌图形的研究发现,其作品都是通过对简单的几何形状的具象思维而逐渐演绎而来的。如果将其作品中的镶嵌图形作逆向思维,即向简单的几何形状演化,我们会发现——到最后只是一个简单的正方形而已。由此可见,正方形是镶嵌的最基本图形,一切复杂的可以用作镶嵌的图形都是由其演化而来的(如图1)。通过对正方形作可镶嵌式分割,会得到很多几何形,如果把这些几何形再作进一步细化分割,就会形成具象的可用于镶嵌的图形。这样看起来似乎非常简单,其实不然,由简单的几何形状到演化为具象的图形的过程,其实是很复杂的一种思维过程,需要具备特别强的图形思维及联想能力才可能做到。

(科教论文网 lw.nSeAc.com编辑发布)


  2.几何群组的运用
  除了几何形状的演化外,为了便于从整体上把握镶嵌图形镶嵌的可能性,运用几何群组的形式是很有必要的。迄今为止,数学家共找到17种可用于镶嵌的几何群组,令数学家吃惊的是,埃舍尔的镶嵌图形作品恰巧有目的或无目的地运用了这些几何群组。如埃舍尔的鱼的镶嵌作品就是采用的几何群组形式而创作的(如图2)。无疑,这些几何群组的运用加大了镶嵌图形的可行性,也可以更好地从整体上去把握它,但这些同样需要具备一定的图形思维能力,否则,很难做到。
  3.形状的多重思维
   共2页: 1 [2] 下一页 论文出处(作者):王力椮
中国文艺创作的意境
3∶7比率在平面设计中的运用
    上一篇:幼儿音乐兴趣与活动技能的培养 下一篇:没有了