基于DSP芯片的超光谱图像压缩技术(1)
2013-11-18 01:06
导读:计算机应用论文论文,基于DSP芯片的超光谱图像压缩技术(1)应该怎么写,有什么格式要求,科教论文网提供的这篇文章是一个很好的范例:
摘 要 基于DSP的超光谱图像压缩系统中,一方面需要寻找优秀的
摘 要 基于DSP的超光谱图像压缩系统中,一方面需要寻找优秀的算法,另一方面需要结合DSP芯片的特点,选取合适设计方案,实现系统设计的功能。本文结合目前现状,重点介绍了算法的设计,以及DSP芯片的选取方法,并讨论了如何有效地优化系统。 关键词 DSP;图像压缩;超光谱图像1 引言 超光谱图像压缩技术是现代信息处理技术中一项尤为重要的技术,近几年来基于DSP的图像压缩技术成为业内焦点。然而,数据运算量大、处理数据突发性强是图像处理系统中最大的特点,尤其是超光谱图像,每幅图像一般有着上百层的光谱信息。同时,一方面,现有的JPEG、JPEG2000等一些标准算法并不适合超光谱图像压缩领域的要求,或者因为其算法的复杂度难于硬件实现等;另一方面,DSP芯片的飞速发展,各芯片的性能有差异,完成的功能也不同。因此,算法的寻找与芯片的选择,是系统设计的关键步骤,也是开发者十分关注的问题。2 系统的算法设计 图像压缩算法中,主要包括脉码调制、量化法、预测编码、变换编码、矢量量化、子带编码等。在现有图像编码方法进一步发展的同时,一些新的具有重要发展前景的图像编码方法如模型基图像编码方法,分形图像编码和神经网络方法等,取得了引人注目的进展并取得了不少研究成果。它们的显著特点是突破了常规编码技术所依据的信源编码理论的框架,效果更好。2.1 系统对算法的要求 目前,流行的图像压缩方法众多,至于这些方法哪些更好或者哪些不好,还很难评价,而且各个算法的压缩效率也是与具体的图像数据和DSP芯片密切相关,无法下统一的结论。但总的来说,在图像压缩技术中,大多是多种方法结合使用,很少有用单纯一种方法完成的。一般来说,压缩比越大,算法越复杂,实时压缩解压缩的困难程度越大,要求的硬件环境也越高。比如在可视电话中,若原图像格式采用QCIF(176×144),则原始图像有4.5Mb/s的数据量,若最后用28.8kb/S的MODEM在PSTN上传输,则要提供150多倍的压缩。当然,由于算法的复杂度增大,还需付出大量的软件和硬件代价。 对于不同的应用系统,算法有相应的要求。如遥感超光谱图像实时压缩系统中,一般要求是无损压缩,且芯片体积小,性能稳定等;而在视频图像压缩系统中,则要求较大的压缩比,即使丢掉一些信息也是允许的,且芯片处理速度要快,能够达到系统实时性的要求。即使在确定的系统中,选择合适的算法也有着重要的意义。比如采用 ADI公司Blackfin533系列DSP(定点DSP),当处理一幅大小为720×576的灰度图片时,采用改进后的DCT算法共耗时252ms。如果采用传统的DCT变换方法,仅DCT变换耗时就达到330ms。可见,算法的选择对系统的性能有着非常重要的作用。2.2 算法的选取 到2007年为止,基于DSP的图像压缩技术中,最常见的是变换编码和熵编码。前者通过变换,重新组织数据,使图像能量相对集中于较少的几个系数,而其他的系数值只具有很小能量,这样通过抑制能量小的系数,即可实现数据压缩,压缩方法是有损还是无损也由变换编码中是否丢弃一些高频能量来决定,如小波变换和离散余弦变换等;后者则是在编码过程中不丢失信息量,即要求保存信息熵,是根据消息出现概率的分布特性而进行的,是无损压缩编码。在超光谱图像压缩系统中,往往是要求无损或近无损,一般采用传统的预测编码(DPCM)方法,它不经过变换,直接探索像素与像素之间的相关性和波段与波段之间的相关性。一般在波段之间采用预测编码,波段内采用变换编码,去掉波段和像素之间的相关性,然后再采用熵编码。 对于DSP硬件系统来说,最擅长的工作是算法简单的加法和移位运算。如果需要保持较高的编码效率,则要尽可能采用运算简单,避免乘法、查找和判断的算法,尽量保持软硬件的流水线结构。因此,目前能在DSP平台实现的图像编码中,采用的算法大多具有这些特点。。 比如变换编码中的整数小波变换,乘法器占用很大的硬件资源,不利于芯片实现,但由于小波滤波器的系数是固定的,因此把乘法操作优化为移位寄存器和加法器操作,即只存在简单的移位和加法操作,速度很快,占用内存少,非常利于硬件实现。而熵编码中的算术编码,2001年就有人提出一种改进的Q-coder算术编码算法[2],采用重整化方法,可以用来解决硬件实现中的进位翻转问题,采用移位加来代替原算法中的乘法,可以在硬件花费较少的情况下显著提高算法的编码效率。3 系统的芯片选择 在系统设计过程中,选择DSP芯片是非常重要的一个环节。只有选定了DSP芯片,才能进一步设计其外围电路及系统的其他电路。超光谱图像压缩系统中DSP芯片的选择应考虑实际应用的需要而确定。 第一,要确定采用哪个公司或哪个系列的芯片。DSP的主要供应商有TI,ADI,Motorola,Lucent和Zilog等,其中TI 占有最大的市场份额。另外ADI公司也占有一定的市场,与TI公司相比,ADI公司的DSP芯片系统时钟一般不经分频直接使用,串行口带有硬件压扩,可从8位EPROM引导程序,可变成等待状态发生器等。由于工作时钟较高的原因,TI公司的DSP芯片在单芯片处理能力上优于ADI公司的产品,但是在多芯片集成处理上ADI公司的DSP芯片性能更好一些。其他如ALTEAR公司的产品也有着部分市场。例如,APEX20K系列的APEX20K200EFC484-2X器件,在H.264标准中,先对算术编码的结构做了改进,用查表代替了乘法操作,并采用流水线结构实现,它的算术编码器的速度可以达到0.2bit/cycle[3]。 图像压缩领域中,我国市场上最常见的是TI公司的C6000系列芯片。尽管C5000系列芯片也可用于图像处理系统,但满足不了实时性的要求。比如在指令周期为10ns的C5402上对一个1M大小的二进制数据流进行算术编码,需0.4s[4],若处理一副512*512*8的图像,最少需要800多秒,不能满足实际的应用。另外还有C8x系列多核DSP集成系统等,但由于价格昂贵和开发复杂也将被淘汰。 第二,确定选择定点或是浮点DSP。系统采用的数据格式决定了它所处理信号的精度、动态范围和信噪比,且不同数据格式的易用性和开发难度也不一样。目前定点DSP品种最多,处理速度为20~2400MIPS;浮点DSP基本由TI公司和ADI公司垄断,处理速度为40M~1GFLOPS。共2页: 1 [2] 下一页 论文出处(作者):
(科教作文网http://zw.ΝsΕAc.Com编辑整理) 使用JCA inbound实现信息流入集成