数据挖掘在电力负荷预测中的应用(1)
2014-10-05 01:57
导读:计算机应用论文论文,数据挖掘在电力负荷预测中的应用(1)论文样本,在线游览或下载,科教论文网海量论文供你参考:
摘 要 本文对电力负荷预测的研究主要运用了数据挖掘中的聚类
摘 要 本文对电力负荷预测的研究主要运用了数据挖掘中的聚类分析。构架了一种基于CURE聚类算法的电力负荷预测模型,对短期电力负荷数据进行有效的预测。并通过海量数据存储, 数据挖掘和决策信息的支持,可有效地克服数据有限性,不完整性及影响因素复杂性对预测结果的影响,发挥独特优势、实现经济价值。 关键词 电力系统;数据挖掘;CURE聚类算法;负荷预测 电力负荷预测是能量管理系统及配电管理系统的重要组成部分,是电力系统规划和运行调度的依据,也是电力市场化商业运营所必需的基本内容。准确的负荷预测,可以合理的安排电网内部发电机组的启停,减少不必要的旋转储备容量,合理安排机组的检修计划,在保证社会的正常生产和生活的条件下,有效的降低发电成本,提高经济效益和社会效益。短期负荷预测是电力系统调度和计划部门安排购电计划和制定运行方式的基础。由于电力负荷除了受温度、天气状况等非线性因素影响之外,还具有自身的随机性,故短期负荷预测是一个非常复杂的问题[1]。 人们对短期负荷预测方法的研究主要包括三个方面:传统算法的研究、现代算法的研究和预测应用的研究,各研究层面的侧重点互不相同,但由于影响负荷预测结果的因素多样,始终存在着预测精度不高的问题。采用数据挖掘技术,可以很好的解决准确度不高的问题。1 数据挖掘技术1.1 数据挖掘介绍 数据挖掘是一门涉及面很广的交叉性新兴学科,它涉及到数据库、人工智能、数理统计、并行计算、可视化等等领域。它是在没有明确假设的前提下去挖掘信息、发现知识的。数据挖掘所得到的信息应具有先前未知、有效和实用三个特征。 基于广义的数据挖掘观点,数据挖掘是指从存放在数据库、数据仓库或其他信息库中的大量数据中挖掘知识的过程。数据挖掘不仅能对过去的数据进行查询和遍历,并且能够对将来的趋势和行为进行预测,并自动探测以前未发现的模式,从而很好地支持人们的决策。被挖掘出来的信息,能够用于信息管理,查询处理,决策支持,过程控制以及许多其它应用。1.2 数据挖掘过程 负荷预测工作的关键在于收集大量的历史数据,建立科学有效的预测模型,采用有效的算法,以历史数据为基础,进行大量试验性研究,总结经验,不断修正模型和算法,以真正反映负荷变化规律。 (1) 调查和选择历史负荷数据资料 多方面调查收集资料,包括电力企业内部资料和外部资料,从众多的资料中挑选出有用的一小部分,即把资料浓缩到最小量。挑选资料时的标准要直接、可靠并且是最新的资料。如果资料的收集和选择得不好,会直接影响负荷预测的质量。本人通过建立计算机数据管理系统,利用计算机软件系统来自动管理数据。 (2) 历史资料的整理 一般来说,由于预测的质量不会超过所用资料的质量,所以要对所收集的与负荷有关的统计资料进行审核和必要的加工整理,来保证资料的质量,从而为保证预测质量打下基础,即要注意资料的完整无缺,数字准确无误,反映的都是正常状态下的水平,资料中没有异常的“分离项”,还要注意资料的补缺,并对不可靠的资料加以核实调整。本人通过建立数据完整性、一致性约束模型,来建立海量数据集为后面的数据挖掘做好充分的准备。 (3) 对负荷数据的预处理 在经过初步整理之后,还要对所用资料进行数据分析预处理[2],即对历史资料中的异常值的平稳化以及缺失数据的补遗,针对异常数据,主要采用水平处理、垂直处理方法。数据的水平处理即在进行分析数据时,将前后两个时间的负荷数据作为基准,设定待处理数据的最大变动范围,当待处理数据超过这个范围,就视为不良数据,采用平均值的方法平稳其变化;数据的垂直处理即在负荷数据预处理时考虑其 24h 的小周期,即认为不同日期的同一时刻的负荷应该具有相似性,同时刻的负荷值应维持在一定的范围内,对于超出范围的不良数据修正,为待处理数据的最近几天该时刻的负荷平均值。

图1 异常数据分布共2页: 1 [2] 下一页 论文出处(作者):