计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

基于边缘特征的二值化阈值选取方法(1)

2015-04-21 01:22
导读:计算机应用论文论文,基于边缘特征的二值化阈值选取方法(1)应该怎么写,有什么格式要求,科教论文网提供的这篇文章是一个很好的范例:摘要 阈值选取是图象处理与分析的基础。针对几种常用的图象二值化自动选取
摘要 阈值选取是图象处理与分析的基础。针对几种常用的图象二值化自动选取阈值方法,通过计算机仿真对实验结果进行了比较研究。在此基础上,提出了一种新的图象二值化算法。该算法着重于在图象二值化时保留图象的边缘特征。实验结果表明,这个基于边缘特征检测算子的算法能很好地保留原图的边缘特征,并能处理低质量的图象。关键词 图象分割 图象处理 二值化图象分割是图象分子合处理的重要手段,其目的是从图象中把目标区域和背景区域分开。图象分割有很多方法,其中最为简单和有效的是阈值处理。通过选择一个或几个合适的灰度阈值,原图中的目标和背景就很容易被分开。如何选取阈值能达到有效的分割效果,是阈值处理的关键。1 几种典型算法1.1平均灰度值法该方法以图象中的所有象素的灰度值的平均值为阈值。阈值可由下面的公式计算得到:其中,N为象素总数,L为最大灰度级,f(i,j)为点处的灰度值。该方法计算简单,对哪些对比度强的图象非常有效,但对哪些对比度较低的图象则效果较差。1.2类别方差法对一幅图象,根据一个门限可将其划分为前景和背景两类,选取不同的门限可以得到不同的类别分离性能,类别方差反映了类别划分的性能。类别方差自动门限法就是利用类别方差作为判断依据,选取使得 类间方差最大和类内方差最小的门限作为最佳阈值。设图象中的灰度范围是G={0,1,2,…,L-1},选择门限t将其划分为两类:1.3最大熵法因为熵属于一种均匀度量,均匀性用熵来度量3时,则可以导出最大熵阈值法:设t为阈值,目标灰度分布为p0/Pt,p1/Pt,…,pt/Pt,其中, 。同样,背景灰度分布为pt 1/(1-Pt),…,pL-1/(1-Pt),目标部分熵为 背景部分熵为 ,直方图的熵为E(t)=E1(t) E2(t)E(t)最大即意味着目标区域和背景区域内各自的灰度分布具有最大的同一性,同时t代表分割两区域的阈值。该方法由于涉及对数运算,运算速度较慢,但对不同目标大小和信噪比的图象能产生较好的分割效果。以上几种算法都没有考虑在二值化过程中保留原有图象的特征。2 基于边缘特征的二值化方法边缘特征在文字识别、指纹识别等应用中是非常重要的特征,是识别成功与否的关键。因此,在这些应用中的二值化预处理过程中,我们希望能较好地保留原有图象的边缘特征,并不增加新的边缘特征。算法思想的关键:首先,用微分算子检测图象的边缘;然后,在这些边缘象素点上进行二值化阈值的自动选取;最后,对于其他非边缘象素点则采取常规方法进行二值化处理。该算法描述如下://f为去噪后的输入图象,g为二值化后的图象①对f进行抽取边缘特征,得到边缘图象e;②对e进行常规二值化处理,得到二值图象b;③用整体阈值法确定一个f的整体阈值;共2页: 1 [2] 下一页 论文出处(作者):

(科教作文网http://zw.ΝsΕAc.Com编辑整理)


AUTOCAD中条形码生成控件的设计
基于“CPLD SCM”结构的交流异步电机空间矢量控制
    上一篇:电子商务下供应链成员信任机制的建立(1) 下一篇:没有了